-
Notifications
You must be signed in to change notification settings - Fork 388
/
model.py
225 lines (183 loc) · 8.79 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
import tensorflow as tf
from tensorflow.contrib.training import HParams
def default_hparams():
return HParams(
n_vocab=0,
n_ctx=1024,
n_embd=768,
n_head=12,
n_layer=12,
)
def shape_list(x):
"""Deal with dynamic shape in tensorflow cleanly."""
static = x.shape.as_list()
dynamic = tf.shape(x)
return [dynamic[i] if s is None else s for i, s in enumerate(static)]
def softmax(x, axis=-1):
x = x - tf.reduce_max(x, axis=axis, keepdims=True)
ex = tf.exp(x)
return ex / tf.reduce_sum(ex, axis=axis, keepdims=True)
def gelu(x):
return 0.5*x*(1+tf.tanh(np.sqrt(2/np.pi)*(x+0.044715*tf.pow(x, 3))))
def gelu2(x):
return x * tf.sigmoid(1.702 * x)
def norm(x, scope, *, axis=-1, epsilon=1e-5):
"""Normalize to mean = 0, std = 1, then do a diagonal affine transform."""
with tf.variable_scope(scope):
n_state = x.shape[axis].value
g = tf.get_variable('g', [n_state], initializer=tf.constant_initializer(1))
s = tf.reduce_mean(tf.square(x), axis=axis, keepdims=True)
x = x * tf.rsqrt(s + epsilon)
x = x*g
return x
def split_states(x, n):
"""Reshape the last dimension of x into [n, x.shape[-1]/n]."""
*start, m = shape_list(x)
return tf.reshape(x, start + [n, m//n])
def merge_states(x):
"""Smash the last two dimensions of x into a single dimension."""
*start, a, b = shape_list(x)
return tf.reshape(x, start + [a*b])
def conv1d(x, scope, nf, *, w_init_stdev=0.02):
with tf.variable_scope(scope):
*start, nx = shape_list(x)
w = tf.get_variable('w', [nx, nf], initializer=tf.random_normal_initializer(stddev=w_init_stdev))
c = tf.reshape(tf.matmul(tf.reshape(x, [-1, nx]), tf.reshape(w, [-1, nf])), start+[nf])
return c
def attention_mask(nd, ns, *, dtype):
"""1's in the lower triangle, counting from the lower right corner.
Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
"""
i = tf.range(nd)[:,None]
j = tf.range(ns)
m = i >= j - ns + nd
return tf.cast(m, dtype)
def attn(x, scope, n_state, *, past, hparams):
assert x.shape.ndims == 3 # Should be [batch, sequence, features]
assert n_state % hparams.n_head == 0
if past is not None:
assert past.shape.ndims == 5 # Should be [batch, 2, heads, sequence, features], where 2 is [k, v]
def split_heads(x):
# From [batch, sequence, features] to [batch, heads, sequence, features]
return tf.transpose(split_states(x, hparams.n_head), [0, 2, 1, 3])
def merge_heads(x):
# Reverse of split_heads
return merge_states(tf.transpose(x, [0, 2, 1, 3]))
def mask_attn_weights(w):
# w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
_, _, nd, ns = shape_list(w)
b = attention_mask(nd, ns, dtype=w.dtype)
b = tf.reshape(b, [1, 1, nd, ns])
w = w*b - tf.cast(1e10, w.dtype)*(1-b)
return w
def multihead_attn(q, k, v):
# q, k, v have shape [batch, heads, sequence, features]
w = tf.matmul(q, k, transpose_b=True)
w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))
if not hparams.bert:
w = mask_attn_weights(w)
w = softmax(w)
a = tf.matmul(w, v)
return a
with tf.variable_scope(scope):
*start, nx = shape_list(x)
wk = tf.get_variable("k_proj", [hparams.n_head, nx // hparams.n_head, n_state], initializer=tf.random_normal_initializer(stddev=1.0/np.sqrt(n_state)))
wq = tf.get_variable("q_proj", [hparams.n_head, nx // hparams.n_head, n_state], initializer=tf.random_normal_initializer(stddev=1.0/np.sqrt(n_state)))
wv = tf.get_variable("v_proj", [hparams.n_head, nx // hparams.n_head, n_state], initializer=tf.random_normal_initializer(stddev=1.0/np.sqrt(n_state)))
k = tf.einsum("bsf,hef->bhse", x, wk)
q = tf.einsum("bsf,hef->bhse", x, wq)
v = tf.einsum("bsf,hef->bhse", x, wv)
present = tf.stack([k, v], axis=1)
if past is not None:
pk, pv = tf.unstack(past, axis=1)
k = tf.concat([pk, k], axis=-2)
v = tf.concat([pv, v], axis=-2)
a = multihead_attn(q, k, v)
wc = tf.get_variable("c_proj", [hparams.n_head, nx // hparams.n_head, n_state], initializer=tf.random_normal_initializer(stddev=1.0/np.sqrt(n_state*hparams.n_layer)))
a = tf.einsum("bhse,hef->bsf", a, wc)
return a, present
def mlp(x, scope, n_state, *, hparams):
with tf.variable_scope(scope):
nx = x.shape[-1].value
h = gelu2(conv1d(x, 'c_fc', n_state))
h2 = conv1d(h, 'c_proj', nx)
return h2
def block(x, scope, *, past, hparams):
with tf.variable_scope(scope):
nx = x.shape[-1].value
a, present = attn(norm(x, 'ln_1'), 'attn', nx, past=past, hparams=hparams)
x = x + a
m = mlp(norm(x, 'ln_2'), 'mlp', nx*4, hparams=hparams)
x = x + m
return x, present
def past_shape(*, hparams, batch_size=None, sequence=None):
return [batch_size, hparams.n_layer, 2, hparams.n_head, sequence, hparams.n_embd // hparams.n_head]
def expand_tile(value, size):
"""Add a new axis of given size."""
value = tf.convert_to_tensor(value, name='value')
ndims = value.shape.ndims
return tf.tile(tf.expand_dims(value, axis=0), [size] + [1]*ndims)
def positions_for(tokens, past_length):
batch_size = tf.shape(tokens)[0]
nsteps = tf.shape(tokens)[1]
return expand_tile(past_length + tf.range(nsteps), batch_size)
def model(hparams, X, Y=None, past=None, scope='model', reuse=False):
with tf.variable_scope(scope, reuse=reuse):
results = {}
batch, sequence = shape_list(X)
if hparams.bert:
M = tf.greater(tf.random.uniform([batch, sequence]), hparams.bert_mask_prob)
M = tf.cast(M, tf.float32)
wpe = tf.get_variable('wpe', [hparams.n_ctx, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.01))
wte = tf.get_variable('wte', [hparams.n_vocab, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.02))
wtet = tf.get_variable('wtet', [hparams.n_vocab, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.0))
past_length = 0 if past is None else tf.shape(past)[-2]
h = tf.gather(wte, X)
if hparams.bert:
h = h * tf.expand_dims(M, 2)
else:
sos = tf.get_variable('sos', [hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.02))
sos_tok = tf.ones([batch, 1, hparams.n_embd], dtype=tf.float32) * sos
h = tf.concat([sos_tok, h[:,:-1,:]], axis=1)
h += tf.gather(wpe, positions_for(X, past_length))
# Transformer
presents = []
pasts = tf.unstack(past, axis=1) if past is not None else [None] * hparams.n_layer
assert len(pasts) == hparams.n_layer
for layer, past in enumerate(pasts):
h, present = block(h, 'h%d' % layer, past=past, hparams=hparams)
presents.append(present)
results['present'] = tf.stack(presents, axis=1)
h = norm(h, 'ln_f')
# Generative loss. Do tokens <n predict token n?
h_flat = tf.reshape(h, [batch*sequence, hparams.n_embd])
gen_logits = tf.matmul(h_flat, wtet, transpose_b=True)
gen_logits = tf.reshape(gen_logits, [batch, sequence, hparams.n_vocab])
results['gen_logits'] = gen_logits
gen_losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=gen_logits, labels=X)
if hparams.bert:
IM = 1.0 - M
gen_losses = tf.reduce_sum(gen_losses * IM, axis=1) / tf.reduce_sum(IM, axis=1)
results['gen_loss'] = tf.reduce_mean(gen_losses)
else:
results['gen_loss'] = tf.reduce_mean(gen_losses)
# Classification loss.
with tf.variable_scope('clf', reuse=reuse):
classes = shape_list(Y)[1]
if hparams.clf:
wclf = tf.get_variable('wclf', [classes, hparams.n_embd],
initializer=tf.random_normal_initializer(stddev=0.0))
else:
wclf = tf.zeros([classes, hparams.n_embd], dtype=tf.float32)
h = tf.reduce_mean(h, axis=1) # average pool over sequence
clf_logits = tf.matmul(h, wclf, transpose_b=True)
clf_losses = tf.nn.softmax_cross_entropy_with_logits_v2(logits=clf_logits, labels=Y)
results['clf_loss'] = tf.reduce_mean(clf_losses)
correct = tf.equal(tf.argmax(clf_logits, -1), tf.argmax(Y, -1))
results['accuracy'] = tf.reduce_mean(tf.cast(correct, tf.float32)) * 100.0
return results