-
Notifications
You must be signed in to change notification settings - Fork 2.4k
/
metricfamily.go
426 lines (381 loc) · 12.6 KB
/
metricfamily.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package internal // import "github.com/open-telemetry/opentelemetry-collector-contrib/receiver/prometheusreceiver/internal"
import (
"encoding/hex"
"fmt"
"math"
"sort"
"strings"
"github.com/prometheus/prometheus/model/exemplar"
"github.com/prometheus/prometheus/model/labels"
"github.com/prometheus/prometheus/model/value"
"github.com/prometheus/prometheus/scrape"
"go.opentelemetry.io/collector/pdata/pcommon"
"go.opentelemetry.io/collector/pdata/pmetric"
"go.uber.org/zap"
"github.com/open-telemetry/opentelemetry-collector-contrib/pkg/translator/prometheus"
)
const (
traceIDKey = "trace_id"
spanIDKey = "span_id"
)
type metricFamily struct {
mtype pmetric.MetricType
// isMonotonic only applies to sums
isMonotonic bool
groups map[uint64]*metricGroup
name string
metadata *scrape.MetricMetadata
groupOrders []*metricGroup
}
// metricGroup, represents a single metric of a metric family. for example a histogram metric is usually represent by
// a couple data complexValue (buckets and count/sum), a group of a metric family always share a same set of tags. for
// simple types like counter and gauge, each data point is a group of itself
type metricGroup struct {
mtype pmetric.MetricType
ts int64
ls labels.Labels
count float64
hasCount bool
sum float64
hasSum bool
created float64
value float64
complexValue []*dataPoint
exemplars pmetric.ExemplarSlice
}
func newMetricFamily(metricName string, mc scrape.MetricMetadataStore, logger *zap.Logger) *metricFamily {
metadata, familyName := metadataForMetric(metricName, mc)
mtype, isMonotonic := convToMetricType(metadata.Type)
if mtype == pmetric.MetricTypeEmpty {
logger.Debug(fmt.Sprintf("Unknown-typed metric : %s %+v", metricName, metadata))
}
return &metricFamily{
mtype: mtype,
isMonotonic: isMonotonic,
groups: make(map[uint64]*metricGroup),
name: familyName,
metadata: metadata,
}
}
// includesMetric returns true if the metric is part of the family
func (mf *metricFamily) includesMetric(metricName string) bool {
if mf.mtype != pmetric.MetricTypeGauge {
// If it is a merged family type, then it should match the
// family name when suffixes are trimmed.
return normalizeMetricName(metricName) == mf.name
}
// If it isn't a merged type, the metricName and family name should match
return metricName == mf.name
}
func (mg *metricGroup) sortPoints() {
sort.Slice(mg.complexValue, func(i, j int) bool {
return mg.complexValue[i].boundary < mg.complexValue[j].boundary
})
}
func (mg *metricGroup) toDistributionPoint(dest pmetric.HistogramDataPointSlice) {
if !mg.hasCount {
return
}
mg.sortPoints()
bucketCount := len(mg.complexValue) + 1
// if the final bucket is +Inf, we ignore it
if bucketCount > 1 && mg.complexValue[bucketCount-2].boundary == math.Inf(1) {
bucketCount--
}
// for OTLP the bounds won't include +inf
bounds := make([]float64, bucketCount-1)
bucketCounts := make([]uint64, bucketCount)
var adjustedCount float64
pointIsStale := value.IsStaleNaN(mg.sum) || value.IsStaleNaN(mg.count)
for i := 0; i < bucketCount-1; i++ {
bounds[i] = mg.complexValue[i].boundary
adjustedCount = mg.complexValue[i].value
// Buckets still need to be sent to know to set them as stale,
// but a staleness NaN converted to uint64 would be an extremely large number.
// Setting to 0 instead.
if pointIsStale {
adjustedCount = 0
} else if i != 0 {
adjustedCount -= mg.complexValue[i-1].value
}
bucketCounts[i] = uint64(adjustedCount)
}
// Add the final bucket based on the total count
adjustedCount = mg.count
if pointIsStale {
adjustedCount = 0
} else if bucketCount > 1 {
adjustedCount -= mg.complexValue[bucketCount-2].value
}
bucketCounts[bucketCount-1] = uint64(adjustedCount)
point := dest.AppendEmpty()
if pointIsStale {
point.SetFlags(pmetric.DefaultDataPointFlags.WithNoRecordedValue(true))
} else {
point.SetCount(uint64(mg.count))
if mg.hasSum {
point.SetSum(mg.sum)
}
}
point.ExplicitBounds().FromRaw(bounds)
point.BucketCounts().FromRaw(bucketCounts)
// The timestamp MUST be in retrieved from milliseconds and converted to nanoseconds.
tsNanos := timestampFromMs(mg.ts)
if mg.created != 0 {
point.SetStartTimestamp(timestampFromFloat64(mg.created))
} else {
// metrics_adjuster adjusts the startTimestamp to the initial scrape timestamp
point.SetStartTimestamp(tsNanos)
}
point.SetTimestamp(tsNanos)
populateAttributes(pmetric.MetricTypeHistogram, mg.ls, point.Attributes())
mg.setExemplars(point.Exemplars())
}
func (mg *metricGroup) setExemplars(exemplars pmetric.ExemplarSlice) {
if mg == nil {
return
}
if mg.exemplars.Len() > 0 {
mg.exemplars.MoveAndAppendTo(exemplars)
}
}
func (mg *metricGroup) toSummaryPoint(dest pmetric.SummaryDataPointSlice) {
// expecting count to be provided, however, in the following two cases, they can be missed.
// 1. data is corrupted
// 2. ignored by startValue evaluation
if !mg.hasCount {
return
}
mg.sortPoints()
point := dest.AppendEmpty()
pointIsStale := value.IsStaleNaN(mg.sum) || value.IsStaleNaN(mg.count)
if pointIsStale {
point.SetFlags(pmetric.DefaultDataPointFlags.WithNoRecordedValue(true))
} else {
if mg.hasSum {
point.SetSum(mg.sum)
}
point.SetCount(uint64(mg.count))
}
quantileValues := point.QuantileValues()
for _, p := range mg.complexValue {
quantile := quantileValues.AppendEmpty()
// Quantiles still need to be sent to know to set them as stale,
// but a staleness NaN converted to uint64 would be an extremely large number.
// By not setting the quantile value, it will default to 0.
if !pointIsStale {
quantile.SetValue(p.value)
}
quantile.SetQuantile(p.boundary)
}
// Based on the summary description from https://prometheus.io/docs/concepts/metric_types/#summary
// the quantiles are calculated over a sliding time window, however, the count is the total count of
// observations and the corresponding sum is a sum of all observed values, thus the sum and count used
// at the global level of the metricspb.SummaryValue
// The timestamp MUST be in retrieved from milliseconds and converted to nanoseconds.
tsNanos := timestampFromMs(mg.ts)
point.SetTimestamp(tsNanos)
if mg.created != 0 {
point.SetStartTimestamp(timestampFromFloat64(mg.created))
} else {
// metrics_adjuster adjusts the startTimestamp to the initial scrape timestamp
point.SetStartTimestamp(tsNanos)
}
populateAttributes(pmetric.MetricTypeSummary, mg.ls, point.Attributes())
}
func (mg *metricGroup) toNumberDataPoint(dest pmetric.NumberDataPointSlice) {
tsNanos := timestampFromMs(mg.ts)
point := dest.AppendEmpty()
// gauge/undefined types have no start time.
if mg.mtype == pmetric.MetricTypeSum {
if mg.created != 0 {
point.SetStartTimestamp(timestampFromFloat64(mg.created))
} else {
// metrics_adjuster adjusts the startTimestamp to the initial scrape timestamp
point.SetStartTimestamp(tsNanos)
}
}
point.SetTimestamp(tsNanos)
if value.IsStaleNaN(mg.value) {
point.SetFlags(pmetric.DefaultDataPointFlags.WithNoRecordedValue(true))
} else {
point.SetDoubleValue(mg.value)
}
populateAttributes(pmetric.MetricTypeGauge, mg.ls, point.Attributes())
mg.setExemplars(point.Exemplars())
}
func populateAttributes(mType pmetric.MetricType, ls labels.Labels, dest pcommon.Map) {
dest.EnsureCapacity(ls.Len())
names := getSortedNotUsefulLabels(mType)
j := 0
for i := range ls {
for j < len(names) && names[j] < ls[i].Name {
j++
}
if j < len(names) && ls[i].Name == names[j] {
continue
}
if ls[i].Value == "" {
// empty label values should be omitted
continue
}
dest.PutStr(ls[i].Name, ls[i].Value)
}
}
func (mf *metricFamily) loadMetricGroupOrCreate(groupKey uint64, ls labels.Labels, ts int64) *metricGroup {
mg, ok := mf.groups[groupKey]
if !ok {
mg = &metricGroup{
mtype: mf.mtype,
ts: ts,
ls: ls,
exemplars: pmetric.NewExemplarSlice(),
}
mf.groups[groupKey] = mg
// maintaining data insertion order is helpful to generate stable/reproducible metric output
mf.groupOrders = append(mf.groupOrders, mg)
}
return mg
}
func (mf *metricFamily) addSeries(seriesRef uint64, metricName string, ls labels.Labels, t int64, v float64) error {
mg := mf.loadMetricGroupOrCreate(seriesRef, ls, t)
if mg.ts != t {
return fmt.Errorf("inconsistent timestamps on metric points for metric %v", metricName)
}
switch mf.mtype {
case pmetric.MetricTypeHistogram, pmetric.MetricTypeSummary:
switch {
case strings.HasSuffix(metricName, metricsSuffixSum):
mg.sum = v
mg.hasSum = true
case strings.HasSuffix(metricName, metricsSuffixCount):
// always use the timestamp from count, because is the only required field for histograms and summaries.
mg.ts = t
mg.count = v
mg.hasCount = true
case strings.HasSuffix(metricName, metricSuffixCreated):
mg.created = v
default:
boundary, err := getBoundary(mf.mtype, ls)
if err != nil {
return err
}
mg.complexValue = append(mg.complexValue, &dataPoint{value: v, boundary: boundary})
}
case pmetric.MetricTypeSum:
if strings.HasSuffix(metricName, metricSuffixCreated) {
mg.created = v
} else {
mg.value = v
}
case pmetric.MetricTypeEmpty, pmetric.MetricTypeGauge, pmetric.MetricTypeExponentialHistogram:
fallthrough
default:
mg.value = v
}
return nil
}
func (mf *metricFamily) appendMetric(metrics pmetric.MetricSlice, trimSuffixes bool) {
metric := pmetric.NewMetric()
// Trims type and unit suffixes from metric name
name := mf.name
if trimSuffixes {
name = prometheus.TrimPromSuffixes(name, mf.mtype, mf.metadata.Unit)
}
metric.SetName(name)
metric.SetDescription(mf.metadata.Help)
metric.SetUnit(mf.metadata.Unit)
pointCount := 0
switch mf.mtype {
case pmetric.MetricTypeHistogram:
histogram := metric.SetEmptyHistogram()
histogram.SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
hdpL := histogram.DataPoints()
for _, mg := range mf.groupOrders {
mg.toDistributionPoint(hdpL)
}
pointCount = hdpL.Len()
case pmetric.MetricTypeSummary:
summary := metric.SetEmptySummary()
sdpL := summary.DataPoints()
for _, mg := range mf.groupOrders {
mg.toSummaryPoint(sdpL)
}
pointCount = sdpL.Len()
case pmetric.MetricTypeSum:
sum := metric.SetEmptySum()
sum.SetAggregationTemporality(pmetric.AggregationTemporalityCumulative)
sum.SetIsMonotonic(mf.isMonotonic)
sdpL := sum.DataPoints()
for _, mg := range mf.groupOrders {
mg.toNumberDataPoint(sdpL)
}
pointCount = sdpL.Len()
case pmetric.MetricTypeEmpty, pmetric.MetricTypeGauge, pmetric.MetricTypeExponentialHistogram:
fallthrough
default: // Everything else should be set to a Gauge.
gauge := metric.SetEmptyGauge()
gdpL := gauge.DataPoints()
for _, mg := range mf.groupOrders {
mg.toNumberDataPoint(gdpL)
}
pointCount = gdpL.Len()
}
if pointCount == 0 {
return
}
metric.MoveTo(metrics.AppendEmpty())
}
func (mf *metricFamily) addExemplar(seriesRef uint64, e exemplar.Exemplar) {
mg := mf.groups[seriesRef]
if mg == nil {
return
}
es := mg.exemplars
convertExemplar(e, es.AppendEmpty())
}
func convertExemplar(pe exemplar.Exemplar, e pmetric.Exemplar) {
e.SetTimestamp(timestampFromMs(pe.Ts))
e.SetDoubleValue(pe.Value)
e.FilteredAttributes().EnsureCapacity(len(pe.Labels))
for _, lb := range pe.Labels {
switch strings.ToLower(lb.Name) {
case traceIDKey:
var tid [16]byte
err := decodeAndCopyToLowerBytes(tid[:], []byte(lb.Value))
if err == nil {
e.SetTraceID(tid)
} else {
e.FilteredAttributes().PutStr(lb.Name, lb.Value)
}
case spanIDKey:
var sid [8]byte
err := decodeAndCopyToLowerBytes(sid[:], []byte(lb.Value))
if err == nil {
e.SetSpanID(sid)
} else {
e.FilteredAttributes().PutStr(lb.Name, lb.Value)
}
default:
e.FilteredAttributes().PutStr(lb.Name, lb.Value)
}
}
}
/*
decodeAndCopyToLowerBytes copies src to dst on lower bytes instead of higher
1. If len(src) > len(dst) -> copy first len(dst) bytes as it is. Example -> src = []byte{0xab,0xcd,0xef,0xgh,0xij}, dst = [2]byte, result dst = [2]byte{0xab, 0xcd}
2. If len(src) = len(dst) -> copy src to dst as it is
3. If len(src) < len(dst) -> prepend required 0s and then add src to dst. Example -> src = []byte{0xab, 0xcd}, dst = [8]byte, result dst = [8]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xab, 0xcd}
*/
func decodeAndCopyToLowerBytes(dst []byte, src []byte) error {
var err error
decodedLen := hex.DecodedLen(len(src))
if decodedLen >= len(dst) {
_, err = hex.Decode(dst, src[:hex.EncodedLen(len(dst))])
} else {
_, err = hex.Decode(dst[len(dst)-decodedLen:], src)
}
return err
}