|
| 1 | +# AsyncProviderOperationsQueue |
| 2 | + |
| 3 | +## Overview |
| 4 | + |
| 5 | +`AsyncProviderOperationsQueue` is a specialized serial async task queue that provides **operation-type-aware last-wins semantics** for handling OpenFeature provider operations. It ensures thread-safe, ordered execution of async operations while optimizing performance by coalescing redundant operations. |
| 6 | + |
| 7 | +## Key Characteristics |
| 8 | + |
| 9 | +- **Serial Execution**: Operations execute one at a time, preserving order |
| 10 | +- **Actor-based**: Thread-safe through Swift's actor isolation |
| 11 | +- **Smart Coalescing**: Automatically skips redundant operations based on last-wins semantics |
| 12 | +- **Continuation Management**: All callers receive completion notification, even if their operation was skipped |
| 13 | + |
| 14 | +## Core Concepts |
| 15 | + |
| 16 | +### Operation Types |
| 17 | + |
| 18 | +The queue distinguishes between two types of operations: |
| 19 | + |
| 20 | +1. **Non-Last-Wins (`lastWins: false`)** |
| 21 | + - Always executes |
| 22 | + - Processes in strict FIFO order |
| 23 | + - Used for critical state changes that must not be skipped |
| 24 | + - Examples: `setProvider()`, `clearProvider()` |
| 25 | + |
| 26 | +2. **Last-Wins (`lastWins: true`)** |
| 27 | + - May be skipped if superseded by newer last-wins operations |
| 28 | + - Optimizes away intermediate states |
| 29 | + - Used for operations where only the final state matters |
| 30 | + - Examples: `setEvaluationContext()` |
| 31 | + |
| 32 | +### Batching Logic |
| 33 | + |
| 34 | +When processing the queue, operations are grouped into "batches": |
| 35 | + |
| 36 | +- **Batch 1**: A single non-last-wins operation |
| 37 | +- **Batch 2**: Consecutive last-wins operations → only the last one executes |
| 38 | + |
| 39 | +## How It Works |
| 40 | + |
| 41 | +### Architecture |
| 42 | + |
| 43 | +``` |
| 44 | +┌─────────────────────────────────────────┐ |
| 45 | +│ AsyncProviderOperationsQueue (Actor) │ |
| 46 | +├─────────────────────────────────────────┤ |
| 47 | +│ - queue: [QueuedOperation] │ |
| 48 | +│ - currentTask: Task<Void, Never>? │ |
| 49 | +├─────────────────────────────────────────┤ |
| 50 | +│ + run(lastWins:operation:) async │ |
| 51 | +│ - processNext() │ |
| 52 | +└─────────────────────────────────────────┘ |
| 53 | +
|
| 54 | +QueuedOperation { |
| 55 | + operation: () async -> Void |
| 56 | + continuation: CheckedContinuation<Void, Never> |
| 57 | + lastWins: Bool |
| 58 | +} |
| 59 | +``` |
| 60 | + |
| 61 | +### Execution Flow |
| 62 | + |
| 63 | +``` |
| 64 | +1. Caller invokes run(lastWins:operation:) |
| 65 | + ↓ |
| 66 | +2. Operation wrapped with continuation and enqueued |
| 67 | + ↓ |
| 68 | +3. If no task running → processNext() |
| 69 | + ↓ |
| 70 | +4. Determine batch type |
| 71 | + ├─ Non-last-wins: Execute single operation |
| 72 | + └─ Last-wins: Find consecutive last-wins ops |
| 73 | + → Execute only the LAST one |
| 74 | + → Skip all others |
| 75 | + ↓ |
| 76 | +5. Resume ALL continuations (skipped + executed) |
| 77 | + ↓ |
| 78 | +6. Recursively processNext() until queue empty |
| 79 | +``` |
| 80 | + |
| 81 | +### Example Scenarios |
| 82 | + |
| 83 | +#### Scenario 1: Non-Last-Wins Operations |
| 84 | + |
| 85 | +```swift |
| 86 | +// Queue: Empty, currentTask: nil |
| 87 | + |
| 88 | +await queue.run(lastWins: false) { setProvider(A) } // Op1 |
| 89 | +await queue.run(lastWins: false) { setProvider(B) } // Op2 |
| 90 | +await queue.run(lastWins: false) { clearProvider() } // Op3 |
| 91 | + |
| 92 | +// Execution order: |
| 93 | +// 1. setProvider(A) ✓ Executed |
| 94 | +// 2. setProvider(B) ✓ Executed |
| 95 | +// 3. clearProvider() ✓ Executed |
| 96 | +// All three operations execute in order |
| 97 | +``` |
| 98 | + |
| 99 | +#### Scenario 2: Last-Wins Coalescing |
| 100 | + |
| 101 | +```swift |
| 102 | +// Queue: Empty, currentTask: nil |
| 103 | + |
| 104 | +await queue.run(lastWins: true) { setContext(ctx1) } // Op1 |
| 105 | +await queue.run(lastWins: true) { setContext(ctx2) } // Op2 |
| 106 | +await queue.run(lastWins: true) { setContext(ctx3) } // Op3 |
| 107 | + |
| 108 | +// Assume Op1 starts executing before Op2/Op3 are enqueued: |
| 109 | +// 1. setContext(ctx1) ✓ Executed (already running) |
| 110 | +// 2. setContext(ctx2) ✗ Skipped (superseded by ctx3) |
| 111 | +// 3. setContext(ctx3) ✓ Executed (last in batch) |
| 112 | + |
| 113 | +// Result: Only ctx1 and ctx3 execute |
| 114 | +// Op2's continuation still resumes immediately when Op3 completes |
| 115 | +``` |
| 116 | + |
| 117 | +#### Scenario 3: Mixed Operations |
| 118 | + |
| 119 | +```swift |
| 120 | +// Queue: Empty, currentTask: nil |
| 121 | + |
| 122 | +await queue.run(lastWins: false) { setProvider(A) } // Op1 |
| 123 | +await queue.run(lastWins: true) { setContext(ctx1) } // Op2 |
| 124 | +await queue.run(lastWins: true) { setContext(ctx2) } // Op3 |
| 125 | +await queue.run(lastWins: false) { setProvider(B) } // Op4 |
| 126 | +await queue.run(lastWins: true) { setContext(ctx3) } // Op5 |
| 127 | + |
| 128 | +// Execution flow: |
| 129 | +// Batch 1: [Op1] non-last-wins |
| 130 | +// → setProvider(A) ✓ Executed |
| 131 | + |
| 132 | +// Batch 2: [Op2, Op3] consecutive last-wins |
| 133 | +// → setContext(ctx1) ✗ Skipped |
| 134 | +// → setContext(ctx2) ✓ Executed (last in batch) |
| 135 | + |
| 136 | +// Batch 3: [Op4] non-last-wins |
| 137 | +// → setProvider(B) ✓ Executed |
| 138 | + |
| 139 | +// Batch 4: [Op5] last-wins |
| 140 | +// → setContext(ctx3) ✓ Executed |
| 141 | + |
| 142 | +// Total executions: Op1, Op2(skipped), Op3, Op4, Op5 |
| 143 | +``` |
| 144 | + |
| 145 | +## Implementation Details |
| 146 | + |
| 147 | +### Actor Isolation |
| 148 | + |
| 149 | +The queue is implemented as a Swift `actor`, providing: |
| 150 | +- Automatic serialization of all property access |
| 151 | +- Thread-safe state management |
| 152 | +- No manual locking required |
| 153 | + |
| 154 | +### Continuation Management |
| 155 | + |
| 156 | +```swift |
| 157 | +await withCheckedContinuation { continuation in |
| 158 | + queue.append(QueuedOperation( |
| 159 | + operation: operation, |
| 160 | + continuation: continuation, |
| 161 | + lastWins: lastWins |
| 162 | + )) |
| 163 | + // ... |
| 164 | +} |
| 165 | +``` |
| 166 | + |
| 167 | +**Key Points:** |
| 168 | +- Each caller gets a continuation that suspends their async context |
| 169 | +- Continuations resume when the operation completes OR is skipped |
| 170 | +- This ensures all callers receive notification, preventing deadlocks |
| 171 | + |
| 172 | +### Batch Processing Algorithm |
| 173 | + |
| 174 | +```swift |
| 175 | +private func processNext() { |
| 176 | + guard !queue.isEmpty else { return } |
| 177 | + |
| 178 | + let firstOp = queue[0] |
| 179 | + |
| 180 | + if !firstOp.lastWins { |
| 181 | + // Execute single non-last-wins operation |
| 182 | + let op = queue.removeFirst() |
| 183 | + currentTask = Task { |
| 184 | + await op.operation() |
| 185 | + op.continuation.resume() // Resume caller |
| 186 | + await self?.processNext() // Process next batch |
| 187 | + } |
| 188 | + } else { |
| 189 | + // Find consecutive last-wins operations |
| 190 | + var lastWinsCount = 0 |
| 191 | + for op in queue { |
| 192 | + if op.lastWins { lastWinsCount += 1 } |
| 193 | + else { break } |
| 194 | + } |
| 195 | + |
| 196 | + // Execute only the LAST one |
| 197 | + let toSkip = queue.prefix(lastWinsCount - 1) |
| 198 | + let toExecute = queue[lastWinsCount - 1] |
| 199 | + queue.removeFirst(lastWinsCount) |
| 200 | + |
| 201 | + currentTask = Task { |
| 202 | + await toExecute.operation() // Execute only last |
| 203 | + |
| 204 | + // Resume ALL continuations |
| 205 | + for op in toSkip { |
| 206 | + op.continuation.resume() // Resume skipped callers |
| 207 | + } |
| 208 | + toExecute.continuation.resume() // Resume executed caller |
| 209 | + |
| 210 | + await self?.processNext() |
| 211 | + } |
| 212 | + } |
| 213 | +} |
| 214 | +``` |
| 215 | + |
| 216 | +## Usage in OpenFeatureAPI |
| 217 | + |
| 218 | +### Non-Last-Wins Operations |
| 219 | + |
| 220 | +Used for operations that must always execute: |
| 221 | + |
| 222 | +```swift |
| 223 | +// Setting a provider (critical state change) |
| 224 | +private func setProviderInternal(provider: FeatureProvider, ...) async { |
| 225 | + await unifiedQueue.run(lastWins: false) { |
| 226 | + // Update state and initialize provider |
| 227 | + // This MUST execute - cannot be skipped |
| 228 | + } |
| 229 | +} |
| 230 | + |
| 231 | +// Clearing a provider (critical state change) |
| 232 | +private func clearProviderInternal() async { |
| 233 | + await unifiedQueue.run(lastWins: false) { |
| 234 | + // Clear provider state |
| 235 | + // This MUST execute - cannot be skipped |
| 236 | + } |
| 237 | +} |
| 238 | +``` |
| 239 | + |
| 240 | +### Last-Wins Operations |
| 241 | + |
| 242 | +Used for operations where only the final state matters: |
| 243 | + |
| 244 | +```swift |
| 245 | +// Updating evaluation context |
| 246 | +private func updateContext(evaluationContext: EvaluationContext) async { |
| 247 | + await unifiedQueue.run(lastWins: true) { |
| 248 | + // Update context and call provider's onContextSet |
| 249 | + // If multiple context updates are queued, only the last one matters |
| 250 | + // Intermediate contexts can be safely skipped |
| 251 | + } |
| 252 | +} |
| 253 | +``` |
| 254 | + |
| 255 | +**Why Last-Wins for Context Updates?** |
| 256 | + |
| 257 | +When a user rapidly changes the evaluation context (e.g., user switches profiles multiple times), we only care about the final context. Executing intermediate `onContextSet` calls is wasteful: |
| 258 | + |
| 259 | +```swift |
| 260 | +// User rapidly switches profiles |
| 261 | +setEvaluationContext(userProfile1) // Queued |
| 262 | +setEvaluationContext(userProfile2) // Queued |
| 263 | +setEvaluationContext(userProfile3) // Queued |
| 264 | + |
| 265 | +// Without coalescing: 3 expensive provider.onContextSet() calls |
| 266 | +// With coalescing: 1 call with userProfile3 (optimal!) |
| 267 | +``` |
| 268 | + |
| 269 | +## Future Enhancements |
| 270 | + |
| 271 | +Potential improvements: |
| 272 | + |
| 273 | +1. **Priority Queuing**: Allow high-priority operations to jump ahead |
| 274 | +2. **Operation Cancellation**: Cancel pending operations explicitly |
| 275 | +3. **Metrics/Telemetry**: Track coalesced operations for monitoring |
| 276 | +4. **Configurable Coalescing**: Allow per-operation coalescing strategy |
| 277 | + |
| 278 | +## Related Files |
| 279 | + |
| 280 | +- `Sources/OpenFeature/OpenFeatureAPI.swift` - Primary consumer |
| 281 | +- `Tests/OpenFeatureTests/ProviderOperationsQueueTests.swift` - Comprehensive tests |
| 282 | +- `Sources/OpenFeature/Provider/FeatureProvider.swift` - Provider interface |
| 283 | + |
| 284 | +## References |
| 285 | + |
| 286 | +- [Swift Actors](https://docs.swift.org/swift-book/LanguageGuide/Concurrency.html#ID645) |
| 287 | +- [Checked Continuations](https://developer.apple.com/documentation/swift/checkedcontinuation) |
| 288 | +- [OpenFeature Specification](https://openfeature.dev/specification/) |
0 commit comments