-
Notifications
You must be signed in to change notification settings - Fork 1k
/
Copy pathacl_gemm_convolution_utils.cpp
259 lines (213 loc) · 9.53 KB
/
acl_gemm_convolution_utils.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*******************************************************************************
* Copyright 2020 Arm Ltd. and affiliates
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
#include "oneapi/dnnl/dnnl_types.h"
#include "common/c_types_map.hpp"
#include "common/dnnl_thread.hpp"
#include "common/type_helpers.hpp"
#include "common/utils.hpp"
#include "common/bfloat16.hpp"
#include "cpu/aarch64/acl_gemm_convolution_utils.hpp"
#include "cpu/platform.hpp"
namespace dnnl {
namespace impl {
namespace cpu {
using namespace dnnl::impl::status;
using namespace dnnl::impl::utils;
using namespace dnnl::impl::alg_kind;
using namespace prop_kind;
using namespace data_type;
namespace acl_gemm_convolution_utils {
status_t init_conf(acl_conv_gemm_conf_t &acp, memory_desc_t &src_md,
memory_desc_t &weights_md, memory_desc_t &dst_md,
memory_desc_t &bias_md, const convolution_desc_t &cd,
const primitive_attr_t &attr) {
const memory_desc_wrapper src_d(&src_md);
const memory_desc_wrapper weights_d(&weights_md);
const memory_desc_wrapper dst_d(&dst_md);
// Compute Library currently supports forward propagation only
const prop_kind_t prop_kind = cd.prop_kind;
const bool is_bwd_d = prop_kind == backward_data;
const bool is_bwd_w = prop_kind == backward_weights;
const bool is_fwd = !(is_bwd_d || is_bwd_w);
if (!is_fwd) return status::unimplemented;
// Current implementation does not support int8 or bf16
bool is_int8_conv = utils::one_of(src_d.data_type(), s8, u8)
&& weights_d.data_type() == s8;
bool is_bf16_conv = utils::everyone_is(
bf16, src_d.data_type(), weights_d.data_type());
if (is_int8_conv || is_bf16_conv) return status::unimplemented;
const int with_groups = weights_d.ndims() == src_d.ndims() + 1;
const int ndims = src_d.ndims();
const bool is_1d = ndims == 3;
const bool is_3d = ndims == 5;
bool is_nspc;
// Compute Library unsupported shape scenarios
if (one_of(true, is_3d, is_1d, with_groups)) {
return status::unimplemented;
}
// batch size
const int mb = src_d.dims()[0];
// src/input channels, height, width
const int ic = src_d.dims()[1];
const int ih = src_d.dims()[ndims - 2];
const int iw = src_d.dims()[ndims - 1];
// dst/output channels, height, width
const int oc = dst_d.dims()[1];
const int oh = dst_d.dims()[ndims - 2];
const int ow = dst_d.dims()[ndims - 1];
// weights height and width
const int kh = weights_d.dims()[with_groups + ndims - 2];
const int kw = weights_d.dims()[with_groups + ndims - 1];
// left, right, top, bottom padding
const int l_pad = cd.padding[0][1];
const int r_pad = cd.padding[1][1];
const int t_pad = cd.padding[0][0];
const int b_pad = cd.padding[1][0];
// height and width strides
const int stride_h = cd.strides[ndims - 4];
const int stride_w = cd.strides[ndims - 3];
acp.padstride_info = arm_compute::PadStrideInfo(stride_w, stride_h, l_pad,
r_pad, t_pad, b_pad, arm_compute::DimensionRoundingType::FLOOR);
// height and width dilations
int dilate_h = cd.dilates[ndims - 4];
int dilate_w = cd.dilates[ndims - 3];
// oneDNN dilations: dk = 1 + (k_size - 1) * (dilate_size + 1)
// Compute Library dilations: dk = dilate_size * (k_size - 1) + 1
// thus acl_dilation = oneDNN_dilation + 1
dilate_h += 1;
dilate_w += 1;
acp.dilation_info = arm_compute::Size2D(dilate_w, dilate_h);
acp.with_bias = cd.bias_desc.format_kind != format_kind::undef
|| cd.diff_bias_desc.format_kind != format_kind::undef;
auto set_or_check_tags = [&](format_tag_t desired_src_tag,
format_tag_t desired_dst_tag) -> status_t {
using namespace format_tag;
auto src_tag = any, dst_tag = any;
if (src_d.format_kind() == format_kind::any) {
CHECK(memory_desc_init_by_tag(src_md, desired_src_tag));
src_tag = desired_src_tag;
} else {
src_tag = memory_desc_matches_one_of_tag(
src_md, nwc, nhwc, ncw, nchw);
}
if (dst_d.format_kind() == format_kind::any) {
CHECK(memory_desc_init_by_tag(dst_md, desired_dst_tag));
dst_tag = desired_dst_tag;
} else {
dst_tag = memory_desc_matches_one_of_tag(
dst_md, nwc, nhwc, ncw, nchw);
}
if (acp.with_bias && bias_md.format_kind == format_kind::any)
CHECK(memory_desc_init_by_tag(bias_md, x));
is_nspc = utils::one_of(src_tag, nwc, nhwc);
memory_desc_t want_wei_md = weights_md;
auto wei_tag = is_nspc ? utils::pick(ndims - 3, wio, hwio)
: utils::pick(ndims - 3, oiw, oihw);
CHECK(memory_desc_init_by_tag(want_wei_md, wei_tag));
// Compute Library does not support mismatching layouts
if ((src_tag != wei_tag) || (src_tag != dst_tag))
return status::unimplemented;
if (weights_md.format_kind == format_kind::any) {
weights_md = want_wei_md;
}
return (want_wei_md == weights_md) ? status::success
: status::unimplemented;
};
// TODO: look into changing default tag to the Compute Library default NHWC
auto default_dat_tag
= utils::pick(ndims - 3, format_tag::ncw, format_tag::nchw);
if (set_or_check_tags(default_dat_tag, default_dat_tag) != status::success)
return status::unimplemented;
const auto acl_layout = is_nspc ? arm_compute::DataLayout::NHWC
: arm_compute::DataLayout::NCHW;
// clang-format off
acp.src_info = arm_compute::TensorInfo(
arm_compute::TensorShape(iw, ih, ic, mb),
1,
arm_compute::DataType::F32,
acl_layout);
acp.wei_info = arm_compute::TensorInfo(
arm_compute::TensorShape(kw, kh, ic, oc),
1,
arm_compute::DataType::F32,
acl_layout);
acp.dst_info = arm_compute::TensorInfo(
arm_compute::TensorShape(ow, oh, oc, mb),
1,
arm_compute::DataType::F32,
acl_layout);
acp.bia_info = arm_compute::TensorInfo(
acp.with_bias ? arm_compute::TensorShape(oc)
: arm_compute::TensorShape(),
1,
arm_compute::DataType::F32,
acl_layout);
// clang-format on
// Post-op activations
acp.act_info = acl_gemm_convolution_utils::get_acl_act(attr);
return status::success;
}
arm_compute::ActivationLayerInfo get_acl_act(const primitive_attr_t &attr) {
const auto &post_ops = attr.post_ops_;
const int entry_idx = post_ops.find(primitive_kind::eltwise);
if (entry_idx == -1) { return arm_compute::ActivationLayerInfo(); }
const auto eltwise_alg = post_ops.entry_[entry_idx].eltwise.alg;
float alpha = post_ops.entry_[entry_idx].eltwise.alpha;
float beta = post_ops.entry_[entry_idx].eltwise.beta;
using acl_act_t = arm_compute::ActivationLayerInfo::ActivationFunction;
acl_act_t acl_act_alg;
switch (eltwise_alg) {
case eltwise_relu:
// oneDNN defines RELU: f(x) = (x > 0) ? x : a*x
// Compute Library defines LEAKY_RELU: f(x) = (x > 0) ? x : a*x
// whilst Compute Library RELU is defined as: f(x) = max(0,x)
if (alpha == 0) {
acl_act_alg = acl_act_t::RELU;
} else {
acl_act_alg = acl_act_t::LEAKY_RELU;
}
break;
case eltwise_tanh:
// oneDNN defines TANH activation as: f(x) = tanh(x)
// Compute Library defines TANH activation as: f(x) = a*tanh(b*x)
// Setting a=b=1 makes the two equivalent
alpha = 1.f;
beta = 1.f;
acl_act_alg = acl_act_t::TANH;
break;
case eltwise_elu: acl_act_alg = acl_act_t::ELU; break;
case eltwise_square: acl_act_alg = acl_act_t::SQUARE; break;
case eltwise_abs: acl_act_alg = acl_act_t::ABS; break;
case eltwise_sqrt: acl_act_alg = acl_act_t::SQRT; break;
case eltwise_linear: acl_act_alg = acl_act_t::LINEAR; break;
case eltwise_bounded_relu: acl_act_alg = acl_act_t::BOUNDED_RELU; break;
case eltwise_soft_relu: acl_act_alg = acl_act_t::SOFT_RELU; break;
case eltwise_logistic: acl_act_alg = acl_act_t::LOGISTIC; break;
default: return arm_compute::ActivationLayerInfo();
}
return arm_compute::ActivationLayerInfo(acl_act_alg, alpha, beta);
}
bool acl_act_ok(alg_kind_t eltwise_activation) {
return utils::one_of(eltwise_activation, eltwise_relu, eltwise_tanh,
eltwise_elu, eltwise_square, eltwise_abs, eltwise_sqrt,
eltwise_linear, eltwise_bounded_relu, eltwise_soft_relu,
eltwise_logistic);
}
} // namespace acl_gemm_convolution_utils
} // namespace cpu
} // namespace impl
} // namespace dnnl