-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_cls.py
103 lines (78 loc) · 4.07 KB
/
eval_cls.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import numpy as np
import argparse
import torch
from models import cls_model
from utils import create_dir, viz_cls
from data_loader import get_data_loader
import random
import pytorch3d
def create_parser():
"""Creates a parser for command-line arguments.
"""
parser = argparse.ArgumentParser()
parser.add_argument('--num_cls_class', type=int, default=3, help='The number of classes')
parser.add_argument('--num_points', type=int, default=10000, help='The number of points per object to be included in the input data')
# Directories and checkpoint/sample iterations
parser.add_argument('--load_checkpoint', type=str, default='best_model') #model_epoch_0
parser.add_argument('--i', type=int, default=0, help="index of the object to visualize")
parser.add_argument('--test_data', type=str, default='./data/cls/data_test.npy')
parser.add_argument('--test_label', type=str, default='./data/cls/label_test.npy')
parser.add_argument('--output_dir', type=str, default='./output_cls')
parser.add_argument('--exp_name', type=str, default="exp", help='The name of the experiment')
parser.add_argument('--main_dir', type=str, default='./data/')
parser.add_argument('--task', type=str, default="cls", help='The task: cls or seg')
parser.add_argument('--batch_size', type=int, default=16, help='The number of images in a batch.')
parser.add_argument('--num_workers', type=int, default=0, help='The number of threads to use for the DataLoader.')
return parser
if __name__ == '__main__':
parser = create_parser()
args = parser.parse_args()
args.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
create_dir(args.output_dir)
# ------ TO DO: Initialize Model for Classification Task ------
model = cls_model().to(args.device)
# Load Model Checkpoint
model_path = './checkpoints/cls/{}.pt'.format(args.load_checkpoint)
with open(model_path, 'rb') as f:
state_dict = torch.load(f, map_location=args.device)
model.load_state_dict(state_dict)
model.eval()
print ("successfully loaded checkpoint from {}".format(model_path))
# Sample Points per Object
ind = np.random.choice(10000,args.num_points, replace=False)
# ------ TO DO: Make Prediction ------
test_dataloader = get_data_loader(args=args, train=False)
correct_obj = 0
num_obj = 0
predictions = []
for batch in test_dataloader:
point_clouds, labels = batch
point_clouds = point_clouds[:, ind].to(args.device)
labels = labels.to(args.device).to(torch.long)
with torch.no_grad():
pred_labels = torch.argmax(model(point_clouds), dim=-1, keepdim=False)
correct_obj += pred_labels.eq(labels.data).cpu().sum().item()
num_obj += labels.size()[0]
predictions.append(pred_labels)
accuracy = correct_obj / num_obj
print(f"test accuracy: {accuracy}")
predictions = torch.cat(predictions).detach().cpu()
# Visualize a few random test point clouds and failed test point clouds
fail_inds = torch.argwhere(predictions != test_dataloader.dataset.label)
for i in range(min(15, len(fail_inds))):
random_ind = random.randint(0, predictions.shape[0]-1)
while random_ind in fail_inds:
random_ind = random.randint(0, predictions.shape[0]-1)
verts = test_dataloader.dataset.data[random_ind, ind]
gt_cls = test_dataloader.dataset.label[random_ind].to(torch.long).detach().cpu().data
pred_cls = predictions[random_ind].detach().cpu().data
path = f"output_cls/1. random_vis_{random_ind}_with_gt_{gt_cls}_pred_{pred_cls}.gif"
viz_cls(verts, path, "cuda")
for i in range(len(fail_inds)):
fail_ind = fail_inds[i]
verts = test_dataloader.dataset.data[fail_ind, ind]
gt_cls = test_dataloader.dataset.label[fail_ind].detach().cpu().data
pred_cls = predictions[fail_ind].detach().cpu().data
path = f"output_cls/1.1 fail_vis_{fail_ind}_with_gt_{gt_cls}_pred_{pred_cls}.gif"
viz_cls(verts, path, "cuda")
print(f"test accuracy: {accuracy}")