-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_classifier.py
41 lines (28 loc) · 1.04 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import pickle
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
data_dict = pickle.load(open('./data.pickle', 'rb'))
#print(data_dict.keys())
lens = []
padded_data = []
max_len = max([len(pt) for pt in data_dict['data']])
for point in data_dict['data']:
if len(point)<max_len:
padded_data.append(point+(max_len-len(point))*[0])
continue
padded_data.append(point)
print([len(l) for l in padded_data])
# print(data_dict['data'])
padded_data = np.asarray(padded_data)
labels = np.asarray(data_dict['labels'])
x_train, x_test, y_train, y_test = train_test_split(padded_data, labels, test_size=0.2, shuffle=True, stratify=labels)
model = RandomForestClassifier()
model.fit(x_train, y_train)
y_predict = model.predict(x_test)
score = accuracy_score(y_predict, y_test)
print('{}% of samples were classified correctly !'.format(score * 100))
f = open('model.p', 'wb')
pickle.dump({'model': model}, f)
f.close()