-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_network-only-fire.py
40 lines (33 loc) · 1.16 KB
/
test_network-only-fire.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from keras.preprocessing.image import img_to_array
from keras.models import load_model
import numpy as np
import argparse
import imutils
import cv2
ap = argparse.ArgumentParser()
ap.add_argument("-m", "--model", required=True,
help="path to trained model model")
ap.add_argument("-i", "--image", required=True,
help="path to input image")
args = vars(ap.parse_args())
image = cv2.imread(args["image"])
orig = image.copy()
image = cv2.resize(image, (28, 28))
image = image.astype("float") / 255.0
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
print("[INFO] loading network...")
model = load_model(args["model"])
(notFire, fire) = model.predict(image)[0]
label2 ="Fire: {:.2f}%".format(fire*100)
print("Fire: {:.2f}%".format(fire*100))
print("Fire: {}".format(fire))
output = imutils.resize(orig, width=400)
if fire > 0.2:
print("Alarme!!!")
cv2.putText(output, label2, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)
else:
cv2.putText(output, label2, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 255, 0), 2)
#cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX,0.7, (100, 255, 0), 2)
cv2.imshow("Output", output)
cv2.waitKey(0)