forked from MadAnalysis/madanalysis5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhistogram_frequency.py
176 lines (127 loc) · 4.62 KB
/
histogram_frequency.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
################################################################################
#
# Copyright (C) 2012-2023 Jack Araz, Eric Conte & Benjamin Fuks
# The MadAnalysis development team, email: <ma5team@iphc.cnrs.fr>
#
# This file is part of MadAnalysis 5.
# Official website: <https://github.com/MadAnalysis/madanalysis5>
#
# MadAnalysis 5 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# MadAnalysis 5 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with MadAnalysis 5. If not, see <http://www.gnu.org/licenses/>
#
################################################################################
from __future__ import absolute_import
from madanalysis.layout.histogram_frequency_core import HistogramFrequencyCore
import logging
from six.moves import range
class HistogramFrequency:
def __init__(self):
self.Reset()
def Print(self):
# General info
if self.ymin!=[] or self.ymax!=[]:
logging.getLogger('MA5').info(' ' + str(self.ymin) + ' ' + str(self.ymax))
# Data
self.positive.Print()
self.negative.Print()
self.summary.Print()
def FinalizeReading(self,main,dataset):
# Statistics
self.summary.nevents = self.positive.nevents + self.negative.nevents
self.summary.entries = self.positive.entries + self.negative.entries
# Data
data = []
for i in range(0,len(self.positive.array)):
data.append(self.positive.array[i]-self.negative.array[i])
if data[-1]<0:
self.warnings.append(\
'dataset='+dataset.name+\
' -> bin '+str(i)+\
' has a negative content : '+\
str(data[-1])+'. This value is set to zero')
data[-1]=0
self.summary.array = data[:] # [:] -> clone of data
# Integral
self.positive.ComputeIntegral()
self.negative.ComputeIntegral()
self.summary.ComputeIntegral()
def CreateHistogram(self,NPID,main):
# Filling bins
self.stringlabels = []
for bin in range(0,len(self.labels)):
# Looking for the good label
pid = int(self.labels[bin])
if NPID:
spid = main.multiparticles.GetName(pid)
else:
spid = main.multiparticles.GetAName(-pid,pid)
if spid=='':
spid=str(pid)
# Set labels
self.stringlabels.append(spid)
# Put final settings
self.nbins = len(self.labels)
self.xmin = 0.
self.xmax = self.nbins
def Reset(self):
# General info
self.name = ""
self.scale = 0.
self.nbins = 0
self.xmin = 0.
self.xmax = 1.
self.ymin = []
self.ymax = []
# labels
self.labels = [] # int: PDG id
self.stringlabels = [] # string: label
# Data
self.positive = HistogramFrequencyCore()
self.negative = HistogramFrequencyCore()
self.summary = HistogramFrequencyCore()
# warnings
self.warnings = []
# regions
self.regions = []
def GetRegions(self):
return self.regions
def GetBinLowEdge(self,bin):
# Special case
if bin<=0:
return self.xmin
if bin>=self.nbins:
return self.xmax
# Computing steps
step = (self.xmax - self.xmin) / float (self.nbins)
# value
return self.xmin+bin*step
def GetBinUpperEdge(self,bin):
# Special case
if bin<=0:
return self.xmin
if bin>=self.nbins:
return self.xmax
# Computing steps
step = (self.xmax - self.xmin) / float (self.nbins)
# value
return self.xmin+(bin+1)*step
def GetBinMean(self,bin):
# Special case
if bin<0:
return self.xmin
if bin>=self.nbins:
return self.xmax
# Computing steps
step = (self.xmax - self.xmin) / float (self.nbins)
# value
return self.xmin+(bin+0.5)*step