-
Notifications
You must be signed in to change notification settings - Fork 1
/
runserver.py.py
81 lines (59 loc) · 1.96 KB
/
runserver.py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.imagenet_utils import preprocess_input, decode_predictions
from skimage.transform import resize
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
MODEL_PATH = 'covid.h5'
# Load your trained model
model = tf.keras.models.load_model(MODEL_PATH,compile = False)
#model.save('')
print('Model loaded. Check http://127.0.0.1:5000/')
#Prediction
def model_predict(img_path, model):
img = image.load_img(img_path, grayscale=False, target_size=(64, 64))
show_img = image.load_img(img_path, grayscale=False, target_size=(64, 64))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = np.array(x, 'float32')
x /= 255
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
preds = model_predict(file_path, model)
a = preds[0]
ind = np.argmax(a)
index = ['COVID19','NORMAL','PNEUMONIA']
print('Prediction:', index[ind])
text = "prediction : "+index[ind]
result = index[ind]
# ImageNet Decode
return result
return None
if __name__ == '__main__':
app.run(debug=True)