forked from smacker/go-tree-sitter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bindings.go
985 lines (820 loc) · 26.3 KB
/
bindings.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
package sitter
//#include "bindings.h"
import "C"
import (
"context"
"errors"
"fmt"
"math"
"reflect"
"runtime"
"sync"
"sync/atomic"
"unsafe"
)
// maintain a map of read functions that can be called from C
var readFuncs = &readFuncsMap{funcs: make(map[int]ReadFunc)}
// Parse is a shortcut for parsing bytes of source code,
// returns root node
//
// Deprecated: use ParseCtx instead
func Parse(content []byte, lang *Language) *Node {
n, _ := ParseCtx(context.Background(), content, lang)
return n
}
// ParseCtx is a shortcut for parsing bytes of source code,
// returns root node
func ParseCtx(ctx context.Context, content []byte, lang *Language) (*Node, error) {
p := NewParser()
p.SetLanguage(lang)
tree, err := p.ParseCtx(ctx, nil, content)
if err != nil {
return nil, err
}
return tree.RootNode(), nil
}
// Parser produces concrete syntax tree based on source code using Language
type Parser struct {
isClosed bool
c *C.TSParser
cancel *uintptr
}
// NewParser creates new Parser
func NewParser() *Parser {
cancel := uintptr(0)
p := &Parser{c: C.ts_parser_new(), cancel: &cancel}
C.ts_parser_set_cancellation_flag(p.c, (*C.size_t)(unsafe.Pointer(p.cancel)))
runtime.SetFinalizer(p, (*Parser).Close)
return p
}
// SetLanguage assignes Language to a parser
func (p *Parser) SetLanguage(lang *Language) {
cLang := (*C.struct_TSLanguage)(lang.ptr)
C.ts_parser_set_language(p.c, cLang)
}
// ReadFunc is a function to retrieve a chunk of text at a given byte offset and (row, column) position
// it should return nil to indicate the end of the document
type ReadFunc func(offset uint32, position Point) []byte
// InputEncoding is a encoding of the text to parse
type InputEncoding int
const (
InputEncodingUTF8 InputEncoding = iota
InputEncodingUTF16
)
// Input defines parameters for parse method
type Input struct {
Read ReadFunc
Encoding InputEncoding
}
var (
ErrOperationLimit = errors.New("operation limit was hit")
ErrNoLanguage = errors.New("cannot parse without language")
)
// Parse produces new Tree from content using old tree
//
// Deprecated: use ParseCtx instead
func (p *Parser) Parse(oldTree *Tree, content []byte) *Tree {
t, _ := p.ParseCtx(context.Background(), oldTree, content)
return t
}
// ParseCtx produces new Tree from content using old tree
func (p *Parser) ParseCtx(ctx context.Context, oldTree *Tree, content []byte) (*Tree, error) {
var BaseTree *C.TSTree
if oldTree != nil {
BaseTree = oldTree.c
}
parseComplete := make(chan struct{})
// run goroutine only if context is cancelable to avoid performance impact
if ctx.Done() != nil {
go func() {
select {
case <-ctx.Done():
atomic.StoreUintptr(p.cancel, 1)
case <-parseComplete:
return
}
}()
}
input := C.CBytes(content)
BaseTree = C.ts_parser_parse_string(p.c, BaseTree, (*C.char)(input), C.uint32_t(len(content)))
close(parseComplete)
C.free(input)
return p.convertTSTree(ctx, BaseTree)
}
// ParseInput produces new Tree by reading from a callback defined in input
// it is useful if your data is stored in specialized data structure
// as it will avoid copying the data into []bytes
// and faster access to edited part of the data
func (p *Parser) ParseInput(oldTree *Tree, input Input) *Tree {
t, _ := p.ParseInputCtx(context.Background(), oldTree, input)
return t
}
// ParseInputCtx produces new Tree by reading from a callback defined in input
// it is useful if your data is stored in specialized data structure
// as it will avoid copying the data into []bytes
// and faster access to edited part of the data
func (p *Parser) ParseInputCtx(ctx context.Context, oldTree *Tree, input Input) (*Tree, error) {
var BaseTree *C.TSTree
if oldTree != nil {
BaseTree = oldTree.c
}
funcID := readFuncs.register(input.Read)
BaseTree = C.call_ts_parser_parse(p.c, BaseTree, C.int(funcID), C.TSInputEncoding(input.Encoding))
readFuncs.unregister(funcID)
return p.convertTSTree(ctx, BaseTree)
}
// convertTSTree converts the tree-sitter response into a *Tree or an error.
//
// tree-sitter can fail for 3 reasons:
// - cancelation
// - operation limit hit
// - no language set
//
// We check for all those conditions if ther return value is nil.
// see: https://github.com/tree-sitter/tree-sitter/blob/7890a29db0b186b7b21a0a95d99fa6c562b8316b/lib/include/tree_sitter/api.h#L209-L246
func (p *Parser) convertTSTree(ctx context.Context, tsTree *C.TSTree) (*Tree, error) {
if tsTree == nil {
if ctx.Err() != nil {
// reset cancellation flag so the parse can be re-used
atomic.StoreUintptr(p.cancel, 0)
// context cancellation caused a timeout, return that error
return nil, ctx.Err()
}
if C.ts_parser_language(p.c) == nil {
return nil, ErrNoLanguage
}
return nil, ErrOperationLimit
}
return p.newTree(tsTree), nil
}
// OperationLimit returns the duration in microseconds that parsing is allowed to take
func (p *Parser) OperationLimit() int {
return int(C.ts_parser_timeout_micros(p.c))
}
// SetOperationLimit limits the maximum duration in microseconds that parsing should be allowed to take before halting
func (p *Parser) SetOperationLimit(limit int) {
C.ts_parser_set_timeout_micros(p.c, C.uint64_t(limit))
}
// Reset causes the parser to parse from scratch on the next call to parse, instead of resuming
// so that it sees the changes to the beginning of the source code.
func (p *Parser) Reset() {
C.ts_parser_reset(p.c)
}
// SetIncludedRanges sets text ranges of a file
func (p *Parser) SetIncludedRanges(ranges []Range) {
cRanges := make([]C.TSRange, len(ranges))
for i, r := range ranges {
cRanges[i] = C.TSRange{
start_point: C.TSPoint{
row: C.uint32_t(r.StartPoint.Row),
column: C.uint32_t(r.StartPoint.Column),
},
end_point: C.TSPoint{
row: C.uint32_t(r.EndPoint.Row),
column: C.uint32_t(r.EndPoint.Column),
},
start_byte: C.uint32_t(r.StartByte),
end_byte: C.uint32_t(r.EndByte),
}
}
C.ts_parser_set_included_ranges(p.c, (*C.TSRange)(unsafe.Pointer(&cRanges[0])), C.uint(len(ranges)))
}
// Debug enables debug output to stderr
func (p *Parser) Debug() {
logger := C.stderr_logger_new(true)
C.ts_parser_set_logger(p.c, logger)
}
// Close should be called to ensure that all the memory used by the parse is freed.
//
// As the constructor in go-tree-sitter would set this func call through runtime.SetFinalizer,
// parser.Close() will be called by Go's garbage collector and users would not have to call this manually.
func (p *Parser) Close() {
if !p.isClosed {
C.ts_parser_delete(p.c)
}
p.isClosed = true
}
type Point struct {
Row uint32
Column uint32
}
type Range struct {
StartPoint Point
EndPoint Point
StartByte uint32
EndByte uint32
}
// we use cache for nodes on normal tree object
// it prevent run of SetFinalizer as it introduces cycle
// we can workaround it using separate object
// for details see: https://github.com/golang/go/issues/7358#issuecomment-66091558
type BaseTree struct {
c *C.TSTree
isClosed bool
}
// newTree creates a new tree object from a C pointer. The function will set a finalizer for the object,
// thus no free is needed for it.
func (p *Parser) newTree(c *C.TSTree) *Tree {
base := &BaseTree{c: c}
runtime.SetFinalizer(base, (*BaseTree).Close)
newTree := &Tree{p: p, BaseTree: base, cache: make(map[C.TSNode]*Node)}
return newTree
}
// Tree represents the syntax tree of an entire source code file
// Note: Tree instances are not thread safe;
// you must copy a tree if you want to use it on multiple threads simultaneously.
type Tree struct {
*BaseTree
// p is a pointer to a Parser that produced the Tree. Only used to keep Parser alive.
// Otherwise Parser may be GC'ed (and deleted by the finalizer) while some Tree objects are still in use.
p *Parser
// most probably better save node.id
cache map[C.TSNode]*Node
}
// Copy returns a new copy of a tree
func (t *Tree) Copy() *Tree {
return t.p.newTree(C.ts_tree_copy(t.c))
}
// RootNode returns root node of a tree
func (t *Tree) RootNode() *Node {
ptr := C.ts_tree_root_node(t.c)
return t.cachedNode(ptr)
}
func (t *Tree) cachedNode(ptr C.TSNode) *Node {
if ptr.id == nil {
return nil
}
if n, ok := t.cache[ptr]; ok {
return n
}
n := &Node{ptr, t}
t.cache[ptr] = n
return n
}
// Close should be called to ensure that all the memory used by the tree is freed.
//
// As the constructor in go-tree-sitter would set this func call through runtime.SetFinalizer,
// parser.Close() will be called by Go's garbage collector and users would not have to call this manually.
func (t *BaseTree) Close() {
if !t.isClosed {
C.ts_tree_delete(t.c)
}
t.isClosed = true
}
type EditInput struct {
StartIndex uint32
OldEndIndex uint32
NewEndIndex uint32
StartPoint Point
OldEndPoint Point
NewEndPoint Point
}
func (i EditInput) c() *C.TSInputEdit {
return &C.TSInputEdit{
start_byte: C.uint32_t(i.StartIndex),
old_end_byte: C.uint32_t(i.OldEndIndex),
new_end_byte: C.uint32_t(i.NewEndIndex),
start_point: C.TSPoint{
row: C.uint32_t(i.StartPoint.Row),
column: C.uint32_t(i.StartPoint.Column),
},
old_end_point: C.TSPoint{
row: C.uint32_t(i.OldEndPoint.Row),
column: C.uint32_t(i.OldEndPoint.Column),
},
new_end_point: C.TSPoint{
row: C.uint32_t(i.OldEndPoint.Row),
column: C.uint32_t(i.OldEndPoint.Column),
},
}
}
// Edit the syntax tree to keep it in sync with source code that has been edited.
func (t *Tree) Edit(i EditInput) {
C.ts_tree_edit(t.c, i.c())
}
// Language defines how to parse a particular programming language
type Language struct {
ptr unsafe.Pointer
}
// NewLanguage creates new Language from c pointer
func NewLanguage(ptr unsafe.Pointer) *Language {
return &Language{ptr}
}
// SymbolName returns a node type string for the given Symbol.
func (l *Language) SymbolName(s Symbol) string {
return C.GoString(C.ts_language_symbol_name((*C.TSLanguage)(l.ptr), s))
}
// SymbolType returns named, anonymous, or a hidden type for a Symbol.
func (l *Language) SymbolType(s Symbol) SymbolType {
return SymbolType(C.ts_language_symbol_type((*C.TSLanguage)(l.ptr), s))
}
// SymbolCount returns the number of distinct field names in the language.
func (l *Language) SymbolCount() uint32 {
return uint32(C.ts_language_symbol_count((*C.TSLanguage)(l.ptr)))
}
func (l *Language) FieldName(idx int) string {
return C.GoString(C.ts_language_field_name_for_id((*C.TSLanguage)(l.ptr), C.ushort(idx)))
}
// Node represents a single node in the syntax tree
// It tracks its start and end positions in the source code,
// as well as its relation to other nodes like its parent, siblings and children.
type Node struct {
c C.TSNode
t *Tree // keep pointer on tree because node is valid only as long as tree is
}
type Symbol = C.TSSymbol
type SymbolType int
const (
SymbolTypeRegular SymbolType = iota
SymbolTypeAnonymous
SymbolTypeAuxiliary
)
var symbolTypeNames = []string{
"Regular",
"Anonymous",
"Auxiliary",
}
func (t SymbolType) String() string {
return symbolTypeNames[t]
}
// StartByte returns the node's start byte.
func (n Node) StartByte() uint32 {
return uint32(C.ts_node_start_byte(n.c))
}
// EndByte returns the node's end byte.
func (n Node) EndByte() uint32 {
return uint32(C.ts_node_end_byte(n.c))
}
// StartPoint returns the node's start position in terms of rows and columns.
func (n Node) StartPoint() Point {
p := C.ts_node_start_point(n.c)
return Point{
Row: uint32(p.row),
Column: uint32(p.column),
}
}
// EndPoint returns the node's end position in terms of rows and columns.
func (n Node) EndPoint() Point {
p := C.ts_node_end_point(n.c)
return Point{
Row: uint32(p.row),
Column: uint32(p.column),
}
}
// Symbol returns the node's type as a Symbol.
func (n Node) Symbol() Symbol {
return C.ts_node_symbol(n.c)
}
// Type returns the node's type as a string.
func (n Node) Type() string {
return C.GoString(C.ts_node_type(n.c))
}
// String returns an S-expression representing the node as a string.
func (n Node) String() string {
ptr := C.ts_node_string(n.c)
defer C.free(unsafe.Pointer(ptr))
return C.GoString(ptr)
}
// Equal checks if two nodes are identical.
func (n Node) Equal(other *Node) bool {
return bool(C.ts_node_eq(n.c, other.c))
}
// IsNull checks if the node is null.
func (n Node) IsNull() bool {
return bool(C.ts_node_is_null(n.c))
}
// IsNamed checks if the node is *named*.
// Named nodes correspond to named rules in the grammar,
// whereas *anonymous* nodes correspond to string literals in the grammar.
func (n Node) IsNamed() bool {
return bool(C.ts_node_is_named(n.c))
}
// IsMissing checks if the node is *missing*.
// Missing nodes are inserted by the parser in order to recover from certain kinds of syntax errors.
func (n Node) IsMissing() bool {
return bool(C.ts_node_is_missing(n.c))
}
// IsExtra checks if the node is *extra*.
// Extra nodes represent things like comments, which are not required the grammar, but can appear anywhere.
func (n Node) IsExtra() bool {
return bool(C.ts_node_is_extra(n.c))
}
// IsError checks if the node is a syntax error.
// Syntax errors represent parts of the code that could not be incorporated into a valid syntax tree.
func (n Node) IsError() bool {
return n.Symbol() == math.MaxUint16
}
// HasChanges checks if a syntax node has been edited.
func (n Node) HasChanges() bool {
return bool(C.ts_node_has_changes(n.c))
}
// HasError check if the node is a syntax error or contains any syntax errors.
func (n Node) HasError() bool {
return bool(C.ts_node_has_error(n.c))
}
// Parent returns the node's immediate parent.
func (n Node) Parent() *Node {
nn := C.ts_node_parent(n.c)
return n.t.cachedNode(nn)
}
// Child returns the node's child at the given index, where zero represents the first child.
func (n Node) Child(idx int) *Node {
nn := C.ts_node_child(n.c, C.uint32_t(idx))
return n.t.cachedNode(nn)
}
// NamedChild returns the node's *named* child at the given index.
func (n Node) NamedChild(idx int) *Node {
nn := C.ts_node_named_child(n.c, C.uint32_t(idx))
return n.t.cachedNode(nn)
}
// ChildCount returns the node's number of children.
func (n Node) ChildCount() uint32 {
return uint32(C.ts_node_child_count(n.c))
}
// NamedChildCount returns the node's number of *named* children.
func (n Node) NamedChildCount() uint32 {
return uint32(C.ts_node_named_child_count(n.c))
}
// ChildByFieldName returns the node's child with the given field name.
func (n Node) ChildByFieldName(name string) *Node {
str := C.CString(name)
defer C.free(unsafe.Pointer(str))
nn := C.ts_node_child_by_field_name(n.c, str, C.uint32_t(len(name)))
return n.t.cachedNode(nn)
}
// FieldNameForChild returns the field name of the child at the given index, or "" if not named.
func (n Node) FieldNameForChild(idx int) string {
return C.GoString(C.ts_node_field_name_for_child(n.c, C.uint32_t(idx)))
}
// NextSibling returns the node's next sibling.
func (n Node) NextSibling() *Node {
nn := C.ts_node_next_sibling(n.c)
return n.t.cachedNode(nn)
}
// NextNamedSibling returns the node's next *named* sibling.
func (n Node) NextNamedSibling() *Node {
nn := C.ts_node_next_named_sibling(n.c)
return n.t.cachedNode(nn)
}
// PrevSibling returns the node's previous sibling.
func (n Node) PrevSibling() *Node {
nn := C.ts_node_prev_sibling(n.c)
return n.t.cachedNode(nn)
}
// PrevNamedSibling returns the node's previous *named* sibling.
func (n Node) PrevNamedSibling() *Node {
nn := C.ts_node_prev_named_sibling(n.c)
return n.t.cachedNode(nn)
}
// Edit the node to keep it in-sync with source code that has been edited.
func (n Node) Edit(i EditInput) {
C.ts_node_edit(&n.c, i.c())
}
// Content returns node's source code from input as a string
func (n Node) Content(input []byte) string {
return string(input[n.StartByte():n.EndByte()])
}
func (n Node) NamedDescendantForPointRange(start Point, end Point) *Node {
cStartPoint := C.TSPoint{
row: C.uint32_t(start.Row),
column: C.uint32_t(start.Column),
}
cEndPoint := C.TSPoint{
row: C.uint32_t(end.Row),
column: C.uint32_t(end.Column),
}
nn := C.ts_node_named_descendant_for_point_range(n.c, cStartPoint, cEndPoint)
return n.t.cachedNode(nn)
}
// TreeCursor allows you to walk a syntax tree more efficiently than is
// possible using the `Node` functions. It is a mutable object that is always
// on a certain syntax node, and can be moved imperatively to different nodes.
type TreeCursor struct {
c *C.TSTreeCursor
t *Tree
isClosed bool
}
// NewTreeCursor creates a new tree cursor starting from the given node.
func NewTreeCursor(n *Node) *TreeCursor {
cc := C.ts_tree_cursor_new(n.c)
c := &TreeCursor{
c: &cc,
t: n.t,
}
runtime.SetFinalizer(c, (*TreeCursor).Close)
return c
}
// Close should be called to ensure that all the memory used by the tree cursor
// is freed.
//
// As the constructor in go-tree-sitter would set this func call through runtime.SetFinalizer,
// parser.Close() will be called by Go's garbage collector and users would not have to call this manually.
func (c *TreeCursor) Close() {
if !c.isClosed {
C.ts_tree_cursor_delete(c.c)
}
c.isClosed = true
}
// Reset re-initializes a tree cursor to start at a different node.
func (c *TreeCursor) Reset(n *Node) {
c.t = n.t
C.ts_tree_cursor_reset(c.c, n.c)
}
// CurrentNode of the tree cursor.
func (c *TreeCursor) CurrentNode() *Node {
n := C.ts_tree_cursor_current_node(c.c)
return c.t.cachedNode(n)
}
// CurrentFieldName gets the field name of the tree cursor's current node.
//
// This returns empty string if the current node doesn't have a field.
func (c *TreeCursor) CurrentFieldName() string {
return C.GoString(C.ts_tree_cursor_current_field_name(c.c))
}
// GoToParent moves the cursor to the parent of its current node.
//
// This returns `true` if the cursor successfully moved, and returns `false`
// if there was no parent node (the cursor was already on the root node).
func (c *TreeCursor) GoToParent() bool {
return bool(C.ts_tree_cursor_goto_parent(c.c))
}
// GoToNextSibling moves the cursor to the next sibling of its current node.
//
// This returns `true` if the cursor successfully moved, and returns `false`
// if there was no next sibling node.
func (c *TreeCursor) GoToNextSibling() bool {
return bool(C.ts_tree_cursor_goto_next_sibling(c.c))
}
// GoToFirstChild moves the cursor to the first child of its current node.
//
// This returns `true` if the cursor successfully moved, and returns `false`
// if there were no children.
func (c *TreeCursor) GoToFirstChild() bool {
return bool(C.ts_tree_cursor_goto_first_child(c.c))
}
// GoToFirstChildForByte moves the cursor to the first child of its current node
// that extends beyond the given byte offset.
//
// This returns the index of the child node if one was found, and returns -1
// if no such child was found.
func (c *TreeCursor) GoToFirstChildForByte(b uint32) int64 {
return int64(C.ts_tree_cursor_goto_first_child_for_byte(c.c, C.uint32_t(b)))
}
// QueryErrorType - value that indicates the type of QueryError.
type QueryErrorType int
const (
QueryErrorNone QueryErrorType = iota
QueryErrorSyntax
QueryErrorNodeType
QueryErrorField
QueryErrorCapture
)
// QueryError - if there is an error in the query,
// then the Offset argument will be set to the byte offset of the error,
// and the Type argument will be set to a value that indicates the type of error.
type QueryError struct {
Offset uint32
Type QueryErrorType
}
func (qe *QueryError) Error() string {
switch qe.Type {
case QueryErrorNone:
return ""
case QueryErrorSyntax:
return fmt.Sprintf("syntax error (offset: %d)", qe.Offset)
case QueryErrorNodeType:
return fmt.Sprintf("node type error (offset: %d)", qe.Offset)
case QueryErrorField:
return fmt.Sprintf("field error (offset: %d)", qe.Offset)
case QueryErrorCapture:
return fmt.Sprintf("capture error (offset: %d)", qe.Offset)
default:
return fmt.Sprintf("unknown error (offset: %d)", qe.Offset)
}
}
// Query API
type Query struct {
c *C.TSQuery
isClosed bool
}
// NewQuery creates a query by specifying a string containing one or more patterns.
// In case of error returns QueryError.
func NewQuery(pattern []byte, lang *Language) (*Query, error) {
var (
erroff C.uint32_t
errtype C.TSQueryError
)
input := C.CBytes(pattern)
c := C.ts_query_new(
(*C.struct_TSLanguage)(lang.ptr),
(*C.char)(input),
C.uint32_t(len(pattern)),
&erroff,
&errtype,
)
C.free(input)
if errtype != C.TSQueryError(QueryErrorNone) {
return nil, &QueryError{Offset: uint32(erroff), Type: QueryErrorType(errtype)}
}
q := &Query{c: c}
runtime.SetFinalizer(q, (*Query).Close)
return q, nil
}
// Close should be called to ensure that all the memory used by the query is freed.
//
// As the constructor in go-tree-sitter would set this func call through runtime.SetFinalizer,
// parser.Close() will be called by Go's garbage collector and users would not have to call this manually.
func (q *Query) Close() {
if !q.isClosed {
C.ts_query_delete(q.c)
}
q.isClosed = true
}
func (q *Query) PatternCount() uint32 {
return uint32(C.ts_query_pattern_count(q.c))
}
func (q *Query) CaptureCount() uint32 {
return uint32(C.ts_query_capture_count(q.c))
}
func (q *Query) StringCount() uint32 {
return uint32(C.ts_query_string_count(q.c))
}
type QueryPredicateStepType int
const (
QueryPredicateStepTypeDone QueryPredicateStepType = iota
QueryPredicateStepTypeCapture
QueryPredicateStepTypeString
)
type QueryPredicateStep struct {
Type QueryPredicateStepType
ValueId uint32
}
func (q *Query) PredicatesForPattern(patternIndex uint32) []QueryPredicateStep {
var (
length C.uint32_t
cPredicateSteps []C.TSQueryPredicateStep
predicateSteps []QueryPredicateStep
)
cPredicateStep := C.ts_query_predicates_for_pattern(q.c, C.uint32_t(patternIndex), &length)
count := int(length)
slice := (*reflect.SliceHeader)((unsafe.Pointer(&cPredicateSteps)))
slice.Cap = count
slice.Len = count
slice.Data = uintptr(unsafe.Pointer(cPredicateStep))
for _, s := range cPredicateSteps {
stepType := QueryPredicateStepType(s._type)
valueId := uint32(s.value_id)
predicateSteps = append(predicateSteps, QueryPredicateStep{stepType, valueId})
}
return predicateSteps
}
func (q *Query) CaptureNameForId(id uint32) string {
var length C.uint32_t
name := C.ts_query_capture_name_for_id(q.c, C.uint32_t(id), &length)
return C.GoStringN(name, C.int(length))
}
func (q *Query) StringValueForId(id uint32) string {
var length C.uint32_t
value := C.ts_query_string_value_for_id(q.c, C.uint32_t(id), &length)
return C.GoStringN(value, C.int(length))
}
// QueryCursor carries the state needed for processing the queries.
type QueryCursor struct {
c *C.TSQueryCursor
t *Tree
// keep a pointer to the query to avoid garbage collection
q *Query
isClosed bool
}
// NewQueryCursor creates a query cursor.
func NewQueryCursor() *QueryCursor {
qc := &QueryCursor{c: C.ts_query_cursor_new(), t: nil}
runtime.SetFinalizer(qc, (*QueryCursor).Close)
return qc
}
// Exec executes the query on a given syntax node.
func (qc *QueryCursor) Exec(q *Query, n *Node) {
qc.q = q
qc.t = n.t
C.ts_query_cursor_exec(qc.c, q.c, n.c)
}
func (qc *QueryCursor) SetPointRange(startPoint Point, endPoint Point) {
cStartPoint := C.TSPoint{
row: C.uint32_t(startPoint.Row),
column: C.uint32_t(startPoint.Column),
}
cEndPoint := C.TSPoint{
row: C.uint32_t(endPoint.Row),
column: C.uint32_t(endPoint.Column),
}
C.ts_query_cursor_set_point_range(qc.c, cStartPoint, cEndPoint)
}
// Close should be called to ensure that all the memory used by the query cursor is freed.
//
// As the constructor in go-tree-sitter would set this func call through runtime.SetFinalizer,
// parser.Close() will be called by Go's garbage collector and users would not have to call this manually.
func (qc *QueryCursor) Close() {
if !qc.isClosed {
C.ts_query_cursor_delete(qc.c)
}
qc.isClosed = true
}
// QueryCapture is a captured node by a query with an index
type QueryCapture struct {
Index uint32
Node *Node
}
// QueryMatch - you can then iterate over the matches.
type QueryMatch struct {
ID uint32
PatternIndex uint16
Captures []QueryCapture
}
// NextMatch iterates over matches.
// This function will return (nil, false) when there are no more matches.
// Otherwise, it will populate the QueryMatch with data
// about which pattern matched and which nodes were captured.
func (qc *QueryCursor) NextMatch() (*QueryMatch, bool) {
var (
cqm C.TSQueryMatch
cqc []C.TSQueryCapture
)
if ok := C.ts_query_cursor_next_match(qc.c, &cqm); !bool(ok) {
return nil, false
}
qm := &QueryMatch{
ID: uint32(cqm.id),
PatternIndex: uint16(cqm.pattern_index),
}
count := int(cqm.capture_count)
slice := (*reflect.SliceHeader)((unsafe.Pointer(&cqc)))
slice.Cap = count
slice.Len = count
slice.Data = uintptr(unsafe.Pointer(cqm.captures))
for _, c := range cqc {
idx := uint32(c.index)
node := qc.t.cachedNode(c.node)
qm.Captures = append(qm.Captures, QueryCapture{idx, node})
}
return qm, true
}
func (qc *QueryCursor) NextCapture() (*QueryMatch, uint32, bool) {
var (
cqm C.TSQueryMatch
cqc []C.TSQueryCapture
captureIndex C.uint32_t
)
if ok := C.ts_query_cursor_next_capture(qc.c, &cqm, &captureIndex); !bool(ok) {
return nil, 0, false
}
qm := &QueryMatch{
ID: uint32(cqm.id),
PatternIndex: uint16(cqm.pattern_index),
}
count := int(cqm.capture_count)
slice := (*reflect.SliceHeader)((unsafe.Pointer(&cqc)))
slice.Cap = count
slice.Len = count
slice.Data = uintptr(unsafe.Pointer(cqm.captures))
for _, c := range cqc {
idx := uint32(c.index)
node := qc.t.cachedNode(c.node)
qm.Captures = append(qm.Captures, QueryCapture{idx, node})
}
return qm, uint32(captureIndex), true
}
// keeps callbacks for parser.parse method
type readFuncsMap struct {
sync.Mutex
funcs map[int]ReadFunc
count int
}
func (m *readFuncsMap) register(f ReadFunc) int {
m.Lock()
defer m.Unlock()
m.count++
m.funcs[m.count] = f
return m.count
}
func (m *readFuncsMap) unregister(id int) {
m.Lock()
defer m.Unlock()
delete(m.funcs, id)
}
func (m *readFuncsMap) get(id int) ReadFunc {
m.Lock()
defer m.Unlock()
return m.funcs[id]
}
//export callReadFunc
func callReadFunc(id C.int, byteIndex C.uint32_t, position C.TSPoint, bytesRead *C.uint32_t) *C.char {
readFunc := readFuncs.get(int(id))
content := readFunc(uint32(byteIndex), Point{
Row: uint32(position.row),
Column: uint32(position.column),
})
*bytesRead = C.uint32_t(len(content))
// Note: This memory is freed inside the C code; see bindings.c
input := C.CBytes(content)
return (*C.char)(input)
}