|
| 1 | +(**************************************************************************) |
| 2 | +(* *) |
| 3 | +(* OCaml *) |
| 4 | +(* *) |
| 5 | +(* Xavier Leroy, projet Gallium, INRIA Rocquencourt *) |
| 6 | +(* *) |
| 7 | +(* Copyright 2014 Institut National de Recherche en Informatique et *) |
| 8 | +(* en Automatique. *) |
| 9 | +(* *) |
| 10 | +(* All rights reserved. This file is distributed under the terms of *) |
| 11 | +(* the GNU Lesser General Public License version 2.1, with the *) |
| 12 | +(* special exception on linking described in the file LICENSE. *) |
| 13 | +(* *) |
| 14 | +(**************************************************************************) |
| 15 | + |
| 16 | +(* Common subexpression elimination by value numbering over extended |
| 17 | + basic blocks. *) |
| 18 | + |
| 19 | +open Mach |
| 20 | + |
| 21 | +type valnum = int |
| 22 | + |
| 23 | +(* Classification of operations *) |
| 24 | + |
| 25 | +type op_class = |
| 26 | + | Op_pure (* pure arithmetic, produce one or several result *) |
| 27 | + | Op_checkbound (* checkbound-style: no result, can raise an exn *) |
| 28 | + | Op_load (* memory load *) |
| 29 | + | Op_store of bool (* memory store, false = init, true = assign *) |
| 30 | + | Op_other (* anything else that does not allocate nor store in memory *) |
| 31 | + |
| 32 | +(* We maintain sets of equations of the form |
| 33 | + valnums = operation(valnums) |
| 34 | + plus a mapping from registers to valnums (value numbers). *) |
| 35 | + |
| 36 | +type rhs = operation * valnum array |
| 37 | + |
| 38 | +module Equations = struct |
| 39 | + module Rhs_map = |
| 40 | + Map.Make(struct type t = rhs let compare = Stdlib.compare end) |
| 41 | + |
| 42 | + type 'a t = |
| 43 | + { load_equations : 'a Rhs_map.t; |
| 44 | + other_equations : 'a Rhs_map.t } |
| 45 | + |
| 46 | + let empty = |
| 47 | + { load_equations = Rhs_map.empty; |
| 48 | + other_equations = Rhs_map.empty } |
| 49 | + |
| 50 | + let add op_class op v m = |
| 51 | + match op_class with |
| 52 | + | Op_load -> |
| 53 | + { m with load_equations = Rhs_map.add op v m.load_equations } |
| 54 | + | _ -> |
| 55 | + { m with other_equations = Rhs_map.add op v m.other_equations } |
| 56 | + |
| 57 | + let find op_class op m = |
| 58 | + match op_class with |
| 59 | + | Op_load -> |
| 60 | + Rhs_map.find op m.load_equations |
| 61 | + | _ -> |
| 62 | + Rhs_map.find op m.other_equations |
| 63 | + |
| 64 | + let remove_loads m = |
| 65 | + { load_equations = Rhs_map.empty; |
| 66 | + other_equations = m.other_equations } |
| 67 | +end |
| 68 | + |
| 69 | +type numbering = |
| 70 | + { num_next: int; (* next fresh value number *) |
| 71 | + num_eqs: valnum array Equations.t; (* mapping rhs -> valnums *) |
| 72 | + num_reg: valnum Reg.Map.t } (* mapping register -> valnum *) |
| 73 | + |
| 74 | +let empty_numbering = |
| 75 | + { num_next = 0; num_eqs = Equations.empty; num_reg = Reg.Map.empty } |
| 76 | + |
| 77 | +(** Generate a fresh value number [v] and associate it to register [r]. |
| 78 | + Returns a pair [(n',v)] with the updated value numbering [n']. *) |
| 79 | + |
| 80 | +let fresh_valnum_reg n r = |
| 81 | + let v = n.num_next in |
| 82 | + ({n with num_next = v + 1; num_reg = Reg.Map.add r v n.num_reg}, v) |
| 83 | + |
| 84 | +(* Same, for a set of registers [rs]. *) |
| 85 | + |
| 86 | +let array_fold_transf (f: numbering -> 'a -> numbering * 'b) n (a: 'a array) |
| 87 | + : numbering * 'b array = |
| 88 | + match Array.length a with |
| 89 | + | 0 -> (n, [||]) |
| 90 | + | 1 -> let (n', b) = f n a.(0) in (n', [|b|]) |
| 91 | + | l -> let b = Array.make l 0 and n = ref n in |
| 92 | + for i = 0 to l - 1 do |
| 93 | + let (n', x) = f !n a.(i) in |
| 94 | + b.(i) <- x; n := n' |
| 95 | + done; |
| 96 | + (!n, b) |
| 97 | + |
| 98 | +let fresh_valnum_regs n rs = |
| 99 | + array_fold_transf fresh_valnum_reg n rs |
| 100 | + |
| 101 | +(** [valnum_reg n r] returns the value number for the contents of |
| 102 | + register [r]. If none exists, a fresh value number is returned |
| 103 | + and associated with register [r]. The possibly updated numbering |
| 104 | + is also returned. [valnum_regs] is similar, but for an array of |
| 105 | + registers. *) |
| 106 | + |
| 107 | +let valnum_reg n r = |
| 108 | + try |
| 109 | + (n, Reg.Map.find r n.num_reg) |
| 110 | + with Not_found -> |
| 111 | + fresh_valnum_reg n r |
| 112 | + |
| 113 | +let valnum_regs n rs = |
| 114 | + array_fold_transf valnum_reg n rs |
| 115 | + |
| 116 | +(* Look up the set of equations for an equation with the given rhs. |
| 117 | + Return [Some res] if there is one, where [res] is the lhs. *) |
| 118 | + |
| 119 | +let find_equation op_class n rhs = |
| 120 | + try |
| 121 | + Some(Equations.find op_class rhs n.num_eqs) |
| 122 | + with Not_found -> |
| 123 | + None |
| 124 | + |
| 125 | +(* Find a register containing the given value number. *) |
| 126 | + |
| 127 | +let find_reg_containing n v = |
| 128 | + Reg.Map.fold (fun r v' res -> if v' = v then Some r else res) |
| 129 | + n.num_reg None |
| 130 | + |
| 131 | +(* Find a set of registers containing the given value numbers. *) |
| 132 | + |
| 133 | +let find_regs_containing n vs = |
| 134 | + match Array.length vs with |
| 135 | + | 0 -> Some [||] |
| 136 | + | 1 -> begin match find_reg_containing n vs.(0) with |
| 137 | + | None -> None |
| 138 | + | Some r -> Some [|r|] |
| 139 | + end |
| 140 | + | l -> let rs = Array.make l Reg.dummy in |
| 141 | + begin try |
| 142 | + for i = 0 to l - 1 do |
| 143 | + match find_reg_containing n vs.(i) with |
| 144 | + | None -> raise Exit |
| 145 | + | Some r -> rs.(i) <- r |
| 146 | + done; |
| 147 | + Some rs |
| 148 | + with Exit -> |
| 149 | + None |
| 150 | + end |
| 151 | + |
| 152 | +(* Associate the given value number to the given result register, |
| 153 | + without adding new equations. *) |
| 154 | + |
| 155 | +let set_known_reg n r v = |
| 156 | + { n with num_reg = Reg.Map.add r v n.num_reg } |
| 157 | + |
| 158 | +(* Associate the given value numbers to the given result registers, |
| 159 | + without adding new equations. *) |
| 160 | + |
| 161 | +let array_fold2 f n a1 a2 = |
| 162 | + let l = Array.length a1 in |
| 163 | + assert (l = Array.length a2); |
| 164 | + let n = ref n in |
| 165 | + for i = 0 to l - 1 do n := f !n a1.(i) a2.(i) done; |
| 166 | + !n |
| 167 | + |
| 168 | +let set_known_regs n rs vs = |
| 169 | + array_fold2 set_known_reg n rs vs |
| 170 | + |
| 171 | +(* Record the effect of a move: no new equations, but the result reg |
| 172 | + maps to the same value number as the argument reg. *) |
| 173 | + |
| 174 | +let set_move n src dst = |
| 175 | + let (n1, v) = valnum_reg n src in |
| 176 | + { n1 with num_reg = Reg.Map.add dst v n1.num_reg } |
| 177 | + |
| 178 | +(* Record the equation [fresh valnums = rhs] and associate the given |
| 179 | + result registers [rs] to [fresh valnums]. *) |
| 180 | + |
| 181 | +let set_fresh_regs n rs rhs op_class = |
| 182 | + let (n1, vs) = fresh_valnum_regs n rs in |
| 183 | + { n1 with num_eqs = Equations.add op_class rhs vs n.num_eqs } |
| 184 | + |
| 185 | +(* Forget everything we know about the given result registers, |
| 186 | + which are receiving unpredictable values at run-time. *) |
| 187 | + |
| 188 | +let set_unknown_regs n rs = |
| 189 | + { n with num_reg = Array.fold_right Reg.Map.remove rs n.num_reg } |
| 190 | + |
| 191 | +(* Keep only the equations satisfying the given predicate. *) |
| 192 | + |
| 193 | +let remove_load_numbering n = |
| 194 | + { n with num_eqs = Equations.remove_loads n.num_eqs } |
| 195 | + |
| 196 | +(* Forget everything we know about registers of type [Addr]. *) |
| 197 | + |
| 198 | +let kill_addr_regs n = |
| 199 | + { n with num_reg = |
| 200 | + Reg.Map.filter (fun r _n -> r.Reg.typ <> Cmm.Addr) n.num_reg } |
| 201 | + |
| 202 | +(* Prepend a set of moves before [i] to assign [srcs] to [dsts]. *) |
| 203 | + |
| 204 | +let insert_single_move i src dst = instr_cons (Iop Imove) [|src|] [|dst|] i |
| 205 | + |
| 206 | +let insert_move srcs dsts i = |
| 207 | + match Array.length srcs with |
| 208 | + | 0 -> i |
| 209 | + | 1 -> instr_cons (Iop Imove) srcs dsts i |
| 210 | + | _ -> (* Parallel move: first copy srcs into tmps one by one, |
| 211 | + then copy tmps into dsts one by one *) |
| 212 | + let tmps = Reg.createv_like srcs in |
| 213 | + let i1 = array_fold2 insert_single_move i tmps dsts in |
| 214 | + array_fold2 insert_single_move i1 srcs tmps |
| 215 | + |
| 216 | +class cse_generic = object (self) |
| 217 | + |
| 218 | +(* Default classification of operations. Can be overridden in |
| 219 | + processor-specific files to classify specific operations better. *) |
| 220 | + |
| 221 | +method class_of_operation op = |
| 222 | + match op with |
| 223 | + | Imove | Ispill | Ireload -> assert false (* treated specially *) |
| 224 | + | Iconst_int _ | Iconst_float _ | Iconst_symbol _ -> Op_pure |
| 225 | + | Icall_ind | Icall_imm _ | Itailcall_ind | Itailcall_imm _ |
| 226 | + | Iextcall _ | Iprobe _ -> assert false (* treated specially *) |
| 227 | + | Istackoffset _ -> Op_other |
| 228 | + | Iload(_,_) -> Op_load |
| 229 | + | Istore(_,_,asg) -> Op_store asg |
| 230 | + | Ialloc _ -> assert false (* treated specially *) |
| 231 | + | Iintop(Icheckbound) -> Op_checkbound |
| 232 | + | Iintop _ -> Op_pure |
| 233 | + | Iintop_imm(Icheckbound, _) -> Op_checkbound |
| 234 | + | Iintop_imm(_, _) -> Op_pure |
| 235 | + | Inegf | Iabsf | Iaddf | Isubf | Imulf | Idivf |
| 236 | + | Ifloatofint | Iintoffloat -> Op_pure |
| 237 | + | Ispecific _ -> Op_other |
| 238 | + | Iname_for_debugger _ -> Op_pure |
| 239 | + | Iprobe_is_enabled _ -> Op_other |
| 240 | + |
| 241 | +(* Operations that are so cheap that it isn't worth factoring them. *) |
| 242 | + |
| 243 | +method is_cheap_operation op = |
| 244 | + match op with |
| 245 | + | Iconst_int _ -> true |
| 246 | + | _ -> false |
| 247 | + |
| 248 | +(* Forget all equations involving memory loads. Performed after a |
| 249 | + non-initializing store *) |
| 250 | + |
| 251 | +method private kill_loads n = |
| 252 | + remove_load_numbering n |
| 253 | + |
| 254 | +(* Perform CSE on the given instruction [i] and its successors. |
| 255 | + [n] is the value numbering current at the beginning of [i]. *) |
| 256 | + |
| 257 | +method private cse n i = |
| 258 | + match i.desc with |
| 259 | + | Iend | Ireturn | Iop(Itailcall_ind) | Iop(Itailcall_imm _) |
| 260 | + | Iexit _ | Iraise _ -> |
| 261 | + i |
| 262 | + | Iop (Imove | Ispill | Ireload) -> |
| 263 | + (* For moves, we associate the same value number to the result reg |
| 264 | + as to the argument reg. *) |
| 265 | + let n1 = set_move n i.arg.(0) i.res.(0) in |
| 266 | + {i with next = self#cse n1 i.next} |
| 267 | + | Iop (Icall_ind | Icall_imm _ | Iextcall _ | Iprobe _) -> |
| 268 | + (* For function calls, we should at least forget: |
| 269 | + - equations involving memory loads, since the callee can |
| 270 | + perform arbitrary memory stores; |
| 271 | + - equations involving arithmetic operations that can |
| 272 | + produce [Addr]-typed derived pointers into the heap |
| 273 | + (see below for Ialloc); |
| 274 | + - mappings from hardware registers to value numbers, |
| 275 | + since the callee does not preserve these registers. |
| 276 | + That doesn't leave much usable information: checkbounds |
| 277 | + could be kept, but won't be usable for CSE as one of their |
| 278 | + arguments is always a memory load. For simplicity, we |
| 279 | + just forget everything. *) |
| 280 | + {i with next = self#cse empty_numbering i.next} |
| 281 | + | Iop (Ialloc _) -> |
| 282 | + (* For allocations, we must avoid extending the live range of a |
| 283 | + pseudoregister across the allocation if this pseudoreg |
| 284 | + is a derived heap pointer (a pointer into the heap that does |
| 285 | + not point to the beginning of a Caml block). PR#6484 is an |
| 286 | + example of this situation. Such pseudoregs have type [Addr]. |
| 287 | + Pseudoregs with types other than [Addr] can be kept. |
| 288 | + Moreover, allocation can trigger the asynchronous execution |
| 289 | + of arbitrary Caml code (finalizer, signal handler, context |
| 290 | + switch), which can contain non-initializing stores. |
| 291 | + Hence, all equations over loads must be removed. *) |
| 292 | + let n1 = kill_addr_regs (self#kill_loads n) in |
| 293 | + let n2 = set_unknown_regs n1 i.res in |
| 294 | + {i with next = self#cse n2 i.next} |
| 295 | + | Iop op -> |
| 296 | + begin match self#class_of_operation op with |
| 297 | + | (Op_pure | Op_checkbound | Op_load) as op_class -> |
| 298 | + let (n1, varg) = valnum_regs n i.arg in |
| 299 | + let n2 = set_unknown_regs n1 (Proc.destroyed_at_oper i.desc) in |
| 300 | + begin match find_equation op_class n1 (op, varg) with |
| 301 | + | Some vres -> |
| 302 | + (* This operation was computed earlier. *) |
| 303 | + (* Are there registers that hold the results computed earlier? *) |
| 304 | + begin match find_regs_containing n1 vres with |
| 305 | + | Some res when (not (self#is_cheap_operation op)) |
| 306 | + && (not (Proc.regs_are_volatile res)) -> |
| 307 | + (* We can replace res <- op args with r <- move res, |
| 308 | + provided res are stable (non-volatile) registers. |
| 309 | + If the operation is very cheap to compute, e.g. |
| 310 | + an integer constant, don't bother. *) |
| 311 | + let n3 = set_known_regs n1 i.res vres in |
| 312 | + (* This is n1 above and not n2 because the move |
| 313 | + does not destroy any regs *) |
| 314 | + insert_move res i.res (self#cse n3 i.next) |
| 315 | + | _ -> |
| 316 | + (* We already computed the operation but lost its |
| 317 | + results. Associate the result registers to |
| 318 | + the result valnums of the previous operation. *) |
| 319 | + let n3 = set_known_regs n2 i.res vres in |
| 320 | + {i with next = self#cse n3 i.next} |
| 321 | + end |
| 322 | + | None -> |
| 323 | + (* This operation produces a result we haven't seen earlier. *) |
| 324 | + let n3 = set_fresh_regs n2 i.res (op, varg) op_class in |
| 325 | + {i with next = self#cse n3 i.next} |
| 326 | + end |
| 327 | + | Op_store false | Op_other -> |
| 328 | + (* An initializing store or an "other" operation do not invalidate |
| 329 | + any equations, but we do not know anything about the results. *) |
| 330 | + let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in |
| 331 | + let n2 = set_unknown_regs n1 i.res in |
| 332 | + {i with next = self#cse n2 i.next} |
| 333 | + | Op_store true -> |
| 334 | + (* A non-initializing store can invalidate |
| 335 | + anything we know about prior loads. *) |
| 336 | + let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in |
| 337 | + let n2 = set_unknown_regs n1 i.res in |
| 338 | + let n3 = self#kill_loads n2 in |
| 339 | + {i with next = self#cse n3 i.next} |
| 340 | + end |
| 341 | + (* For control structures, we set the numbering to empty at every |
| 342 | + join point, but propagate the current numbering across fork points. *) |
| 343 | + | Iifthenelse(test, ifso, ifnot) -> |
| 344 | + let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in |
| 345 | + {i with desc = Iifthenelse(test, self#cse n1 ifso, self#cse n1 ifnot); |
| 346 | + next = self#cse empty_numbering i.next} |
| 347 | + | Iswitch(index, cases) -> |
| 348 | + let n1 = set_unknown_regs n (Proc.destroyed_at_oper i.desc) in |
| 349 | + {i with desc = Iswitch(index, Array.map (self#cse n1) cases); |
| 350 | + next = self#cse empty_numbering i.next} |
| 351 | + | Icatch(rec_flag, handlers, body) -> |
| 352 | + let aux (nfail, handler) = |
| 353 | + nfail, self#cse empty_numbering handler |
| 354 | + in |
| 355 | + {i with desc = Icatch(rec_flag, List.map aux handlers, self#cse n body); |
| 356 | + next = self#cse empty_numbering i.next} |
| 357 | + | Itrywith(body, handler) -> |
| 358 | + {i with desc = Itrywith(self#cse n body, |
| 359 | + self#cse empty_numbering handler); |
| 360 | + next = self#cse empty_numbering i.next} |
| 361 | + |
| 362 | +method fundecl f = |
| 363 | + (* CSE can trigger bad register allocation behaviors, see MPR#7630 *) |
| 364 | + if List.mem Cmm.No_CSE f.fun_codegen_options then |
| 365 | + f |
| 366 | + else |
| 367 | + {f with fun_body = self#cse empty_numbering f.fun_body } |
| 368 | + |
| 369 | +end |
0 commit comments