-
Notifications
You must be signed in to change notification settings - Fork 86
/
Copy pathx86_binary_emitter.ml
1765 lines (1567 loc) · 58.3 KB
/
x86_binary_emitter.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(***********************************************************************)
(* *)
(* OCaml *)
(* *)
(* Copyright 2014, OCamlPro. All rights reserved. *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1 *)
(* *)
(***********************************************************************)
(*
Contributors:
* Fabrice LE FESSANT (INRIA/OCamlPro)
*)
[@@@ocaml.warning "+A-4-9"]
open X86_ast
open X86_proc
module String = Misc.Stdlib.String
type section = {
sec_name : string;
mutable sec_instrs : asm_line array;
}
type data_size = B8 | B16 | B32 | B64
module IntSet = Set.Make (Int)
module StringMap = Map.Make (String)
let print_old_arg ppf = function
| Imm _ -> Format.fprintf ppf "Imm"
| Reg8L _ -> Format.fprintf ppf "Reg8L"
| Reg8H _ -> Format.fprintf ppf "Reg8H"
| Reg16 _ -> Format.fprintf ppf "Reg16"
| Reg32 _ -> Format.fprintf ppf "Reg32"
| Reg64 _ -> Format.fprintf ppf "Reg64"
| Regf _ -> Format.fprintf ppf "Regf"
| Mem _ -> Format.fprintf ppf "Mem"
| Mem64_RIP _ -> Format.fprintf ppf "Mem64_RIP"
| Sym _ -> Format.fprintf ppf "Sym"
(*
TODO:
If a or-pattern contains both "Reg64 ... | Reg32 ... ", it means that
we didn't discriminate between 32 bit and 64 bit modes for that
instruction. It also means that using this instruction on a 32-bit
register in 64 bit mode will not generate the 32-bit version of the
instruction, but the 64-bit version...
*)
module Relocation = struct
module Kind = struct
type t =
(* 32 bits offset usually in data section *)
| REL32 of string * int64
| DIR32 of string * int64
| DIR64 of string * int64
end
type t = { offset_from_section_beginning : int; kind : Kind.t }
end
type symbol = {
sy_name : string;
mutable sy_type : string option;
mutable sy_size : int option;
mutable sy_global : bool;
mutable sy_sec : section;
mutable sy_pos : int option;
mutable sy_num : int option; (* position in .symtab *)
}
type buffer = {
sec : section;
buf : Buffer.t;
labels : symbol String.Tbl.t;
mutable patches : (int * data_size * int64) list;
mutable relocations : Relocation.t list;
}
type local_reloc =
| RelocCall of string
| RelocShortJump of string * int (* loc *)
| RelocLongJump of string
| RelocConstant of constant * data_size
type result =
| Rint of int64
| Rabs of string * int64 (* absolute label + offset *)
| Rrel of string * int64
(* relative label + offset *)
(*
let string_of_result = function
Rint n -> Printf.sprintf "Rint %Ld" n
| Rabs (s, n) -> Printf.sprintf "Rabs (%S, %Ld)" s n
| Rrel (s, n) -> Printf.sprintf "Rrel (%S, %Ld)" s n
*)
let get_symbol b s =
try String.Tbl.find b.labels s
with Not_found ->
let sy =
{
sy_name = s;
sy_type = None;
sy_size = None;
sy_pos = None;
sy_global = false;
sy_num = None;
sy_sec = b.sec;
}
in
String.Tbl.add b.labels s sy ;
sy
let buf_int8 b i = Buffer.add_char b.buf (char_of_int (i land 0xff))
let buf_int8L b iL = buf_int8 b (Int64.to_int iL)
let buf_int16L b iL =
buf_int8L b iL;
buf_int8L b (Int64.shift_right iL 8)
let buf_int32L b iL =
buf_int16L b iL;
buf_int16L b (Int64.shift_right iL 16)
let buf_int64L b iL =
buf_int32L b iL;
buf_int32L b (Int64.shift_right iL 32)
let str_int8L s pos v = Bytes.set s pos (char_of_int (Int64.to_int v land 0xff))
let str_int16L s pos v =
str_int8L s pos v;
str_int8L s (pos + 1) (Int64.shift_right_logical v 8)
let str_int32L s pos v =
str_int16L s pos v;
str_int16L s (pos + 2) (Int64.shift_right_logical v 16)
let str_int64L s pos v =
str_int32L s pos v;
str_int32L s (pos + 4) (Int64.shift_right_logical v 32)
(* When a jump has to be generated, we compare the offset between the
source instruction and the target instruction, in number of
instructions.
If the offset is less than [short_jump_threshold] instructions,
we generate a short jump during the first pass. 16 is a "safe"
value, as most instructions are shorter than 8 bytes: [REX] +
[OPCODE] + [MODRM] + [SIB] + [IMM32] *)
let local_relocs = ref []
let local_labels = String.Tbl.create 100
let forced_long_jumps = ref IntSet.empty
let instr_size = ref 4
let new_buffer sec =
{
sec;
buf = Buffer.create 10000;
labels = String.Tbl.create 100;
relocations = [];
patches = [];
}
let label_pos b lbl =
match (String.Tbl.find b.labels lbl).sy_pos with
| None -> raise Not_found
| Some pos -> pos
(* Try to compute some statically computable arithmetic expressions
in labels, or to simplify them to a form that is encodable by
relocations. *)
let eval_const b current_pos cst =
let rec eval = function
| Const n -> Rint n
| ConstThis -> Rabs ("", 0L)
| ConstLabel lbl -> Rabs (lbl, 0L)
| ConstSub (c1, c2) -> (
let c1 = eval c1 and c2 = eval c2 in
match (c1, c2) with
| Rint n1, Rint n2 -> Rint (Int64.sub n1 n2)
| Rabs (s, n1), Rint n2 -> Rabs (s, Int64.sub n1 n2)
| Rrel (s, n1), Rint n2 -> Rrel (s, Int64.sub n1 n2)
| Rabs ("", n1), Rabs ("", n2) -> Rint (Int64.sub n1 n2)
| Rabs ("", n1), Rabs (s2, n2) -> (
try
let sy2 = String.Tbl.find b.labels s2 in
match sy2.sy_pos with
| Some pos2 ->
let pos2 = Int64.of_int pos2 in
Rint
(Int64.sub
(Int64.add n1 (Int64.of_int current_pos))
(Int64.add pos2 n2))
| _ -> assert false
with Not_found -> assert false)
| Rabs (s, n1), Rabs ("", n2) -> (
try
let sy = String.Tbl.find b.labels s in
match sy.sy_pos with
| Some pos ->
let pos = Int64.of_int pos in
Rint
(Int64.sub (Int64.add pos n1)
(Int64.add n2 (Int64.of_int current_pos)))
| _ -> assert false
with Not_found -> Rrel (s, Int64.sub n1 n2))
| Rabs (s1, n1), Rabs (s2, n2) -> (
try
let sy2 = String.Tbl.find b.labels s2 in
try
let sy1 = String.Tbl.find b.labels s1 in
assert (sy1.sy_sec == sy2.sy_sec);
match (sy1.sy_pos, sy2.sy_pos) with
| Some pos1, Some pos2 ->
let pos1 = Int64.of_int pos1 in
let pos2 = Int64.of_int pos2 in
Rint (Int64.sub (Int64.add pos1 n1) (Int64.add pos2 n2))
| _ -> assert false
with Not_found -> (
match sy2.sy_pos with
| Some pos2 ->
let pos2 = Int64.of_int pos2 in
Rrel
( s1,
Int64.sub
(Int64.add n1 (Int64.of_int current_pos))
(Int64.add pos2 n2) )
| _ -> assert false)
with Not_found -> assert false)
| _ -> assert false)
| ConstAdd (c1, c2) -> (
let c1 = eval c1 and c2 = eval c2 in
match (c1, c2) with
| Rint n1, Rint n2 -> Rint (Int64.add n1 n2)
| Rabs (s, n1), Rint n2 | Rint n2, Rabs (s, n1) ->
Rabs (s, Int64.add n1 n2)
| Rrel (s, n1), Rint n2 | Rint n2, Rrel (s, n1) ->
Rrel (s, Int64.add n1 n2)
(* TODO: we could add another case, easy to solve: adding a
Rrel to a Rabs where the symbol is local, in which case it
can be computed. *)
| Rrel (s, n1), Rabs ("", n2) -> Rabs (s, Int64.add n1 n2)
| _ -> assert false)
in
try
let r = eval cst in
(*
if debug then
Printf.eprintf "eval_const (%s) = %s at @%d\n%!"
(X86_gas.string_of_constant cst)
(string_of_result r) current_pos;
*)
r
with e ->
Printf.eprintf "Error in eval_const: exception %S\n%!"
(*(X86_gas.string_of_constant cst)*) (Printexc.to_string e);
raise e
let is_imm32L n = n < 0x8000_0000L && n >= -0x8000_0000L
let is_imm8L x = x < 128L && x >= -128L
let rd_of_regf regf =
match regf with
| XMM n -> n
| TOS -> assert false (* TODO *)
| ST _st -> assert false
(* TODO *)
let rd_of_reg64 = function
| RAX -> 0
| RCX -> 1
| RDX -> 2
| RBX -> 3
| RSP -> 4
| RBP -> 5
| RSI -> 6
| RDI -> 7
| R8 -> 8
| R9 -> 9
| R10 -> 10
| R11 -> 11
| R12 -> 12
| R13 -> 13
| R14 -> 14
| R15 -> 15
let rd_of_reg8 = function
| Reg8L r -> rd_of_reg64 r
| Reg8H AH -> 4
| Reg8H CH -> 5
| Reg8H DH -> 6
| Reg8H BH -> 7
| _ -> assert false
let cd_of_condition condition =
match condition with
| O -> 0
| NO -> 1
| B -> 2
| AE -> 3
| E -> 4
| NE -> 5
| BE -> 6
| A -> 7
| S -> 8
| NS -> 9
| P -> 10
| NP -> 11
| L -> 12
| GE -> 13
| LE -> 14
| G -> 15
(* We should precompute a position for each label depending on
the number of instructions: heuristics = offset_in_instrs x 7
*)
let no_rex = 0
let rex = 0b01000000
let rexr = 0b00000100 (* extension of r *)
let rexr_reg reg = if reg > 7 then rexr else 0
let rexw = rex lor 0b00001000
let rexx = 0b00000010
let rexx_index reg = if reg > 7 then rexx else 0
let rexb = 0b00000001
let rexb_opcode reg = if reg > 7 then rexb else 0
let rexb_rm reg = if reg > 7 then rexb else 0
let rexb_base reg = if reg > 7 then rexb else 0
let reg7 reg = reg land 0x07
let rex_of_reg8 = function Reg8L (RSP | RBP | RSI | RDI) -> rex | _ -> 0
(* TODO: we should check conformance with page 3-2, vol 2A of Intel Spec ? *)
let rex_of_reg16 = function
| RAX | RCX | RDX | RBX | RSP | RBP | RSI | RDI -> 0
| R8 | R9 | R10 | R11 | R12 | R13 | R14 | R15 -> rex
let mod_rm_reg m rm reg = (m lsl 6) + reg7 rm + (reg7 reg lsl 3)
let sib scale index base =
let scale =
match scale with 1 -> 0 | 2 -> 1 | 4 -> 2 | 8 -> 3 | _ -> assert false
in
(scale lsl 6) lor (reg7 index lsl 3) lor reg7 base
let record_reloc b offset_from_section_beginning kind =
b.relocations <-
{ Relocation.offset_from_section_beginning; kind } :: b.relocations
let declare_label b s =
let sy = get_symbol b s in
assert (sy.sy_pos = None);
let pos = Buffer.length b.buf in
sy.sy_pos <- Some pos
let buf_opcodes b opcodes =
ListLabels.iter ~f:(fun opcode -> buf_int8 b opcode) opcodes
let arch64 = Config.architecture = "amd64"
let emit_rex b rexcode =
if arch64 && rexcode <> 0 then buf_int8 b (rexcode lor rex)
let buf_int32_imm b = function
| Imm n ->
assert (is_imm32L n);
buf_int32L b n
| Sym symbol ->
record_reloc b (Buffer.length b.buf) (Relocation.Kind.DIR32 (symbol, 0L));
buf_int32L b 0L
| _ -> assert false
type offset_exp = OImm8 of int64 | OImm32 of string option * int64
let sym32 b sym =
record_reloc b (Buffer.length b.buf) (Relocation.Kind.DIR32 (sym, 0L));
buf_int32L b 0L
let sym64 b sym =
record_reloc b (Buffer.length b.buf) (Relocation.Kind.DIR64 (sym, 0L));
buf_int64L b 0L
let buf_sym b sym offset =
match sym with
| None -> buf_int32L b offset
| Some lbl ->
(* TODO: assert we are in 32 bits ? *)
record_reloc b (Buffer.length b.buf) (Relocation.Kind.DIR32 (lbl, offset));
buf_int32L b 0L
let emit_mod_rm_reg b rex opcodes rm reg =
match rm with
| Reg32 rm ->
let rm = rd_of_reg64 rm in
emit_rex b (rex lor rexr_reg reg lor rexb_rm rm);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b11 rm reg)
| Reg64 rm ->
let rm = rd_of_reg64 rm in
emit_rex b (rex lor rexr_reg reg lor rexb_rm rm);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b11 rm reg)
| (Reg8L _ | Reg8H _) as reg8 ->
let rm = rd_of_reg8 reg8 in
emit_rex b (rex lor rex_of_reg8 reg8 lor rexr_reg reg lor rexb_rm rm);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b11 rm reg)
| Reg16 reg16 ->
let rm = rd_of_reg64 reg16 in
emit_rex b (rex lor rex_of_reg16 reg16 lor rexr_reg reg lor rexb_rm rm);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b11 rm reg)
| Regf rm ->
let rm = rd_of_regf rm in
emit_rex b (rex lor rexr_reg reg lor rexb_rm rm);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b11 rm reg)
(* 64 bits memory access *)
| Mem64_RIP (_, symbol, offset) ->
emit_rex b (rex lor rexr_reg reg);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b00 0b101 reg);
record_reloc b (Buffer.length b.buf)
(Relocation.Kind.REL32 (symbol, Int64.of_int offset));
buf_int32L b 0L
| Mem { arch; typ = _; idx; scale; base; sym; displ } -> (
let offset =
let displ = Int64.of_int displ in
match sym with
| None ->
if is_imm8L displ then OImm8 displ
else if is_imm32L displ then OImm32 (None, displ)
else assert false
| Some s -> OImm32 (Some s, displ)
in
let idx_reg = idx in
let idx = rd_of_reg64 idx in
if scale = 0 then (
assert (base = None && arch = X86);
match offset with
| OImm8 _ -> assert false
| OImm32 (sym, offset) ->
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b00 0b101 reg);
buf_sym b sym offset)
else
match base with
| None -> (
match (idx_reg, scale, offset) with
| (RSP | R12), 1, OImm8 0L ->
emit_rex b (rex lor rexr_reg reg lor rexb_base idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b00 idx reg);
buf_int8 b (sib 1 0b100 idx)
| (RSP | R12), 1, OImm8 offset8 ->
emit_rex b (rex lor rexr_reg reg lor rexb_base idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b01 0b100 reg);
buf_int8 b (sib 1 0b100 idx);
buf_int8L b offset8
| (RSP | R12), 1, OImm32 (sym, offset) ->
(* to 0x??(%rsp) *)
emit_rex b (rex lor rexr_reg reg lor rexb_base idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b10 0b100 reg);
buf_int8 b (sib 1 0b100 idx);
buf_sym b sym offset
| (RBP | R13), 1, OImm8 _ -> (
(* to 0x??(%rbp) *)
(* TODO check if offset8 = 0 is enough *)
emit_rex b (rex lor rexr_reg reg lor rexb_base idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b01 idx reg);
match offset with
| OImm8 offset8 -> buf_int8L b offset8
| _ -> assert false)
| _, 1, OImm8 0L ->
(* to 0x00(%r??) except %rsp and %rbp *)
emit_rex b (rex lor rexr_reg reg lor rexb_rm idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b00 idx reg)
| _, 1, OImm8 offset8 ->
emit_rex b (rex lor rexr_reg reg lor rexb_rm idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b01 idx reg);
buf_int8L b offset8
| _, 1, OImm32 (sym, offset) ->
emit_rex b (rex lor rexr_reg reg lor rexb_rm idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b10 idx reg);
buf_sym b sym offset
| _, _, _ -> (
emit_rex b (rex lor rexr_reg reg lor rexx_index idx);
buf_opcodes b opcodes;
buf_int8 b (mod_rm_reg 0b00 0b100 reg);
buf_int8 b (sib scale idx 0b101);
match offset with
| OImm8 offset8 -> buf_int32L b offset8
| OImm32 (sym, offset) -> buf_sym b sym offset))
| Some base_reg -> (
assert (scale = 1 || scale = 2 || scale = 4 || scale = 8);
let base = rd_of_reg64 base_reg in
emit_rex b
(rex lor rexr_reg reg lor rexx_index idx lor rexb_base base);
buf_opcodes b opcodes;
match (base_reg, offset) with
| (RBP | R13), OImm8 0L ->
(* to 0x00(%rbp+reg) *)
buf_int8 b (mod_rm_reg 0b01 0b100 reg);
buf_int8 b (sib scale idx base);
buf_int8 b 0
| _, OImm8 0L ->
buf_int8 b (mod_rm_reg 0b00 0b100 reg);
buf_int8 b (sib scale idx base)
| _, OImm8 offset ->
buf_int8 b (mod_rm_reg 0b01 0b100 reg);
buf_int8 b (sib scale idx base);
buf_int8L b offset
| _, OImm32 (sym, offset) ->
buf_int8 b (mod_rm_reg 0b10 0b100 reg);
buf_int8 b (sib scale idx base);
buf_sym b sym offset))
| Imm _ | Sym _ -> assert false
let emit_movlpd b dst src =
match (dst, src) with
| Regf reg, ((Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x12 ] rm (rd_of_regf reg)
| ((Mem _ | Mem64_RIP _) as rm), Regf reg ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x13 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_movapd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x28 ] rm (rd_of_regf reg)
| ((Mem _ | Mem64_RIP _) as rm), Regf reg ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x29 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_movd b ~dst ~src =
match (dst, src) with
| Regf reg, ((Reg32 _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b no_rex [ 0x0F; 0x6E ] rm (rd_of_regf reg)
| ((Reg32 _ | Mem _ | Mem64_RIP _) as rm), Regf reg ->
buf_int8 b 0x66;
emit_mod_rm_reg b no_rex [ 0x0F; 0x7E ] rm (rd_of_regf reg)
| _ -> assert false
let emit_movq b ~dst ~src =
(* It seems there is a choice to make on how we encode instructions here
as there are different encoding possible for the same operation.
See https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf,
pages 707 and 755. *)
match (dst, src) with
| Regf reg, ((Reg64 _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b rexw [ 0x0F; 0x6E ] rm (rd_of_regf reg)
| ((Reg64 _ | Mem _ | Mem64_RIP _) as rm), Regf reg ->
buf_int8 b 0x66;
emit_mod_rm_reg b rexw [ 0x0F; 0x7E ] rm (rd_of_regf reg)
| Regf reg, ((Regf _) as rm) ->
buf_int8 b 0xF3;
emit_mod_rm_reg b no_rex [ 0x0F; 0x7E ] rm (rd_of_regf reg)
| _ -> assert false
let emit_movsd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x10 ] rm (rd_of_regf reg)
| ((Mem _ | Mem64_RIP _) as rm), Regf reg ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x11 ] rm (rd_of_regf reg)
| _ ->
Format.eprintf "src=%a dst=%a@." print_old_arg src print_old_arg dst;
assert false
let emit_movss b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF3;
emit_mod_rm_reg b 0 [ 0x0f; 0x10 ] rm (rd_of_regf reg)
| ((Mem _ | Mem64_RIP _) as rm), Regf reg ->
buf_int8 b 0xF3;
emit_mod_rm_reg b 0 [ 0x0f; 0x11 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_andpd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x54 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_bsf b ~dst ~src =
match (dst, src) with
| Reg16 reg, ((Reg16 _ | Mem _ | Mem64_RIP _) as rm)
| Reg32 reg, ((Reg32 _ | Mem _ | Mem64_RIP _) as rm) ->
(* BSF r16, r/m16 and BSF r32, r/m32 *)
emit_mod_rm_reg b 0 [ 0x0F; 0xBC ] rm (rd_of_reg64 reg)
| Reg64 reg, ((Reg64 _ | Mem _ | Mem64_RIP _) as rm) ->
(* BSF r64, r/m64 *)
emit_mod_rm_reg b rexw [ 0x0F; 0xBC ] rm (rd_of_reg64 reg)
| _ -> assert false
let emit_bsr b ~dst ~src =
match (dst, src) with
| Reg16 reg, ((Reg16 _ | Mem _ | Mem64_RIP _) as rm)
| Reg32 reg, ((Reg32 _ | Mem _ | Mem64_RIP _) as rm) ->
(* BSR r16, r/m16 and BSR r32, r/m32 *)
emit_mod_rm_reg b 0 [ 0x0F; 0xBD ] rm (rd_of_reg64 reg)
| Reg64 reg, ((Reg64 _ | Mem _ | Mem64_RIP _) as rm) ->
(* BSR r64, r/m64 *)
emit_mod_rm_reg b rexw [ 0x0F; 0xBD ] rm (rd_of_reg64 reg)
| _ -> assert false
let imm8_of_rounding rounding =
(* bits are:
- 3: Precision Mask (0 = Normal, 1 = Inexact)
- 2: Rounding Select (0 = Use bits 1 and 0 for Rounding mode, 1 = MXCSR.RC)
- 1 and 0: Rounding mode *)
match rounding with
| RoundNearest -> 0b0000
| RoundDown -> 0b0001
| RoundUp -> 0b0010
| RoundTruncate -> 0b0011
| RoundCurrent -> 0b0100
let emit_roundsd b dst rounding src =
let rounding = imm8_of_rounding rounding in
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x3A; 0x0B ] rm (rd_of_regf reg);
buf_int8 b rounding
| _ -> assert false
let emit_addsd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x58 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_sqrtsd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x51 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_mulsd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x59 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_divsd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x5E ] rm (rd_of_regf reg)
| _ -> assert false
let emit_subsd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x5C ] rm (rd_of_regf reg)
| _ -> assert false
let emit_xorpd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x57 ] rm (rd_of_regf reg)
| _ -> assert false
let emit_CVTSI2SD b dst src =
match (dst, src) with
| Regf reg, ((Reg64 _ | Mem { typ = QWORD }) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b rexw [ 0x0f; 0x2A ] rm (rd_of_regf reg)
| Regf reg, ((Reg32 _ | Mem { typ = DWORD }) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x2A ] rm (rd_of_regf reg)
| _ -> assert false
let emit_CVTSD2SI b dst src =
match (dst, src) with
| Reg64 reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b rexw [ 0x0f; 0x2D ] rm (rd_of_reg64 reg)
| Reg32 reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x2D ] rm (rd_of_reg64 reg)
| _ -> assert false
let emit_CVTTSD2SI b dst src =
match (dst, src) with
| Reg64 reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b rexw [ 0x0f; 0x2C ] rm (rd_of_reg64 reg)
| Reg32 reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x2C ] rm (rd_of_reg64 reg)
| _ -> assert false
let emit_CVTSD2SS b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF2;
emit_mod_rm_reg b 0 [ 0x0f; 0x5A ] rm (rd_of_regf reg)
| _ -> assert false
let emit_CVTSS2SD b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0xF3;
emit_mod_rm_reg b 0 [ 0x0f; 0x5A ] rm (rd_of_regf reg)
| _ -> assert false
let emit_comisd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x2F ] rm (rd_of_regf reg)
| _ -> assert false
let emit_ucomisd b dst src =
match (dst, src) with
| Regf reg, ((Regf _ | Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b 0 [ 0x0f; 0x2E ] rm (rd_of_regf reg)
| _ -> assert false
let emit_MOV b dst src =
match (dst, src) with
(* movb *)
| ((Reg8L (RAX | RCX | RDX | RBX) | Reg8H _) as r8), Imm n ->
assert (is_imm8L n);
buf_opcodes b [ 0xB0 + reg7 (rd_of_reg8 r8) ];
buf_int8L b n
| ((Mem _ | Mem64_RIP _) as rm), ((Reg8L _ | Reg8H _) as reg) ->
emit_mod_rm_reg b (rex_of_reg8 reg) [ 0x88 ] rm (rd_of_reg8 reg)
(* no REX.W *)
(* movw *)
| ((Mem _ | Mem64_RIP _) as rm), Reg16 reg ->
buf_int8 b 0x66;
emit_mod_rm_reg b rex [ 0x89 ] rm (rd_of_reg64 reg) (* no REX.W *)
| Reg16 reg, ((Mem _ | Mem64_RIP _) as rm) ->
buf_int8 b 0x66;
emit_mod_rm_reg b rex [ 0x8B ] rm (rd_of_reg64 reg) (* no REX.W *)
(* movl *)
| Reg32 reg32, ((Reg32 _ | Mem _ | Mem64_RIP _) as rm) ->
let reg = rd_of_reg64 reg32 in
emit_mod_rm_reg b 0 [ 0x8B ] rm reg
| ((Mem _ | Mem64_RIP _) as rm), Reg32 reg32 ->
let reg = rd_of_reg64 reg32 in
emit_mod_rm_reg b 0 [ 0x89 ] rm reg
| (Mem { typ = DWORD } as rm), ((Imm _ | Sym _) as n) ->
emit_mod_rm_reg b 0 [ 0xC7 ] rm 0;
buf_int32_imm b n
| (Mem { typ = NONE; arch = X86 } as rm), ((Imm _ | Sym _) as n) ->
let reg = 0 in
emit_mod_rm_reg b 0 [ 0xC7 ] rm reg;
buf_int32_imm b n
| Reg32 r32, ((Imm _ | Sym _) as n) ->
let n =
match n with
| Imm n ->
(* "Shift" [n] from [0, 0xFFFF_FFFF] to [-0x8000_0000, 0x7FFF_FFFF] *)
Imm (Int64.of_int32 (Int64.to_int32 n))
| _ as n -> n
in
let reg = rd_of_reg64 r32 in
emit_rex b (rexb_opcode reg);
buf_int8 b (0xB8 lor reg7 reg);
buf_int32_imm b n
(* movq *)
| Reg64 reg, ((Reg64 _ | Mem _ | Mem64_RIP _) as rm) ->
emit_mod_rm_reg b rexw [ 0x8B ] rm (rd_of_reg64 reg)
| ((Mem _ | Mem64_RIP _) as rm), Reg64 reg ->
emit_mod_rm_reg b rexw [ 0x89 ] rm (rd_of_reg64 reg)
| Reg64 r64, Imm n when not (is_imm32L n) ->
(* MOVNoneQ *)
let reg = rd_of_reg64 r64 in
emit_rex b (rexw lor rexb_opcode reg);
buf_int8 b (0xB8 lor reg7 reg);
buf_int64L b n
| Reg64 r64, Sym symbol when windows ->
let reg = rd_of_reg64 r64 in
emit_rex b (rexw lor rexb_opcode reg);
buf_int8 b (0xB8 lor reg7 reg);
sym64 b symbol
| ((Mem { arch = X64 } | Reg64 _) as rm), ((Imm _ | Sym _) as n) ->
emit_mod_rm_reg b rexw [ 0xC7 ] rm 0;
buf_int32_imm b n
| _ ->
Format.printf "dst = %a@." print_old_arg dst;
Format.printf "src = %a@." print_old_arg src;
assert false
type simple_encoding = {
rm8_r8 : int list;
rm64_r64 : int list;
r8_rm8 : int list;
r64_rm64 : int list;
al_imm8 : int list;
rax_imm32 : int list;
rm8_imm8 : int list;
rm64_imm32 : int list;
rm64_imm8 : int list;
reg : int;
}
let emit_simple_encoding enc b dst src =
match (enc, dst, src) with
(* 64 bits encodings *)
| { rm64_r64 = opcodes }, ((Reg64 _ | Mem _ | Mem64_RIP _) as rm), Reg64 reg
->
emit_mod_rm_reg b rexw opcodes rm (rd_of_reg64 reg)
| { rm64_r64 = opcodes }, ((Reg32 _ | Mem _ | Mem64_RIP _) as rm), Reg32 reg
->
emit_mod_rm_reg b 0 opcodes rm (rd_of_reg64 reg)
| { r64_rm64 = opcodes }, Reg64 reg, ((Mem _ | Mem64_RIP _) as rm) ->
emit_mod_rm_reg b rexw opcodes rm (rd_of_reg64 reg)
| { r64_rm64 = opcodes }, Reg32 reg, ((Mem _ | Mem64_RIP _) as rm) ->
emit_mod_rm_reg b 0 opcodes rm (rd_of_reg64 reg)
| ( { rm64_imm8 = opcodes; reg },
((Reg64 _ | Mem { typ = NONE | QWORD | REAL8; arch = X64 }) as rm),
Imm n )
when is_imm8L n ->
emit_mod_rm_reg b rexw opcodes rm reg;
buf_int8L b n
| ( { rm8_imm8 = opcodes; reg },
((Reg8L _ | Reg8H _ | Mem { typ = BYTE; arch = X64 }) as rm),
Imm n ) ->
assert (is_imm8L n);
emit_mod_rm_reg b rexw opcodes rm reg;
buf_int8L b n
| ( { rm64_imm8 = opcodes; reg },
((Reg32 _ | Mem { typ = DWORD | REAL4 } | Mem { typ = NONE; arch = X86 })
as rm),
Imm n )
when is_imm8L n ->
emit_mod_rm_reg b 0 opcodes rm reg;
buf_int8L b n
| { rax_imm32 = opcodes }, Reg64 RAX, ((Imm _ | Sym _) as n) ->
emit_rex b rexw;
buf_opcodes b opcodes;
buf_int32_imm b n
| { rax_imm32 = opcodes }, Reg32 RAX, ((Imm _ | Sym _) as n) ->
buf_opcodes b opcodes;
buf_int32_imm b n
| ( { rm64_imm32 = opcodes; reg },
((Reg32 _ | Mem { typ = NONE; arch = X86 } | Mem { typ = DWORD | REAL4 })
as rm),
((Imm _ | Sym _) as n) ) ->
emit_mod_rm_reg b 0 opcodes rm reg;
buf_int32_imm b n
| ( { rm64_imm32 = opcodes; reg },
((Reg64 _ | Mem _ | Mem64_RIP _) as rm),
((Imm _ | Sym _) as n) ) ->
emit_mod_rm_reg b rexw opcodes rm reg;
buf_int32_imm b n
| _ ->
Format.eprintf "src=%a dst=%a@." print_old_arg src print_old_arg dst;
assert false
let emit_simple_encoding base reg =
emit_simple_encoding
{
rm8_r8 = [ base ];
rm64_r64 = [ base + 1 ];
r8_rm8 = [ base + 2 ];
r64_rm64 = [ base + 3 ];
al_imm8 = [ base + 4 ];
rax_imm32 = [ base + 5 ];
rm8_imm8 = [ 0x80 ];
rm64_imm32 = [ 0x81 ];
rm64_imm8 = [ 0x83 ];
reg;
}
let emit_ADD = emit_simple_encoding 0x00 0
let emit_OR = emit_simple_encoding 0x08 1
let emit_AND = emit_simple_encoding 0x20 4
let emit_SUB = emit_simple_encoding 0x28 5
let emit_XOR = emit_simple_encoding 0x30 6
let emit_CMP = emit_simple_encoding 0x38 7
let emit_test b dst src =
match (dst, src) with
| ((Reg32 _ | Mem _ | Mem64_RIP _) as rm), Reg32 reg ->
let reg = rd_of_reg64 reg in
emit_mod_rm_reg b 0 [ 0x85 ] rm reg
| ((Reg64 _ | Mem _ | Mem64_RIP _) as rm), Reg64 reg ->
let reg = rd_of_reg64 reg in
emit_mod_rm_reg b rexw [ 0x85 ] rm reg
| Reg64 RAX, ((Imm _ | Sym _) as n) ->
emit_rex b rexw;
buf_opcodes b [ 0xA9 ];
buf_int32_imm b n
| Reg32 RAX, ((Imm _ | Sym _) as n) ->
buf_opcodes b [ 0xA9 ];
buf_int32_imm b n
| ((Reg32 _ | Reg64 _ | Mem _ | Mem64_RIP _) as rm), ((Imm _ | Sym _) as n) ->
emit_mod_rm_reg b rexw [ 0xF7 ] rm 0;
buf_int32_imm b n
| Reg8L RAX, Imm n ->
assert (is_imm8L n);
buf_opcodes b [ 0xA8 ];
buf_int8L b n
| ((Reg8L _ | Reg8H _) as rm), Imm n ->
assert (is_imm8L n);
emit_mod_rm_reg b 0 [ 0xF6 ] rm 0;
buf_int8L b n
| _ -> assert false
(* 3-390 -> 452 *)
let emit_imul b dst src =
match (dst, src) with
| Some (Reg32 reg), ((Reg32 _ | Mem _ | Mem64_RIP _) as rm) ->
let reg = rd_of_reg64 reg in
emit_mod_rm_reg b 0 [ 0x0F; 0xAF ] rm reg
| Some (Reg64 reg), ((Reg64 _ | Mem _ | Mem64_RIP _) as rm) ->
let reg = rd_of_reg64 reg in
emit_mod_rm_reg b rexw [ 0x0F; 0xAF ] rm reg
| Some ((Reg64 reg | Reg32 reg) as rm), Imm n when is_imm8L n ->
let reg = rd_of_reg64 reg in
emit_mod_rm_reg b rexw [ 0x6B ] rm reg;
buf_int8L b n
| Some ((Reg64 reg | Reg32 reg) as rm), ((Imm _ | Sym _) as n) ->
let reg = rd_of_reg64 reg in
emit_mod_rm_reg b rexw [ 0x69 ] rm reg;
buf_int32_imm b n
| None, ((Reg64 _ | Reg32 _ | Mem _ | Mem64_RIP _) as rm) ->
let reg = 5 in
emit_mod_rm_reg b rexw [ 0xF7 ] rm reg
| _ -> assert false
let emit_mul b ~src =
let opcode_extension = 4 in
match src with
| ((Reg8H _ | Reg8L _ | Mem {typ = BYTE; _} | Mem64_RIP (BYTE, _, _)) as rm) ->
emit_mod_rm_reg b rex [ 0xF6 ] rm opcode_extension
| ((Reg16 _ | Mem {typ = WORD; _} | Mem64_RIP (WORD, _, _)) as rm)
| ((Reg32 _ | Mem {typ = DWORD; _} | Mem64_RIP (DWORD, _, _)) as rm) ->
emit_mod_rm_reg b no_rex [ 0xF7 ] rm opcode_extension
| ((Reg64 _ | Mem {typ = QWORD; _} | Mem64_RIP (QWORD, _, _)) as rm) ->
emit_mod_rm_reg b rexw [ 0xF7 ] rm opcode_extension
| _ -> assert false
let emit_idiv b dst =
let reg = 7 in
match dst with