-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathomega.py
55 lines (48 loc) · 1.63 KB
/
omega.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
from scipy.stats import binom
from sigma import sigma
def omega(j, dnew, mnew, kprev, nprev, p_1, p_0):
"""
Computes and returns the ratio, omega, as defined for Minerva 2.0.
Args:
j round number
dnew marginal tally of winner ballots in round j
mnew marginal number of relevant ballots drawn in round j
kprev cumulative tally of winner ballots through round j-1
nprev cumulative number of relevant ballots drawn through round j-1
p_1 proportion of winner ballots as reported
p_0 proportion of winner ballots assumed for the null hypothesis
Returns:
the omega ratio for the passed parameters and data
"""
if j == 1:
return omega1(dnew, mnew, p_1, p_0)
else:
return omega2(dnew, mnew, kprev, nprev, p_1, p_0)
def omega2(dnew, mnew, kprev, nprev, p_1, p_0):
""" Computes omega for rounds j > 1. """
sigmaprev = sigma(kprev, nprev, p_1, p_0)
num = 0
denom = 0
"""
for d in range(dnew,mnew+1):
num += binom.pmf(d, mnew, p_1)
denom += binom.pmf(d, mnew, p_0)
"""
# instead of above commented code, we use sf which gives 1-cdf
num += binom.sf(dnew-1, mnew, p_1)
denom += binom.sf(dnew-1, mnew, p_0)
return sigmaprev * num / denom
def omega1(k, n, p_1, p_0):
""" Computes omega for round j = 1. """
num = 0
denom = 0
"""
for d in range(k,n+1):
num += binom.pmf(d, n, p_1)
denom += binom.pmf(d, n, p_0)
"""
num += binom.sf(k-1, n, p_1)
denom += binom.sf(k-1, n, p_0)
if denom == 0:
return -1
return num / denom