-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloader.py
347 lines (310 loc) · 20.1 KB
/
loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
'''
Load pretrained models,
and convert tf-model to torch-model.
'''
import click
import pickle
import re
import copy
import numpy as np
import torch
import dnnlib
from torch_utils import misc
gdrive_urls = {
"gdrive:clevr-snapshot.pkl": "https://drive.google.com/uc?id=1eRgwoasbDgUAA2tsD-LKghDiYTsfHWn3",
"gdrive:cityscapes-snapshot.pkl": "https://drive.google.com/uc?id=1Lrq3ga9N9ViH2KyvpCnSdG2xyZe_yDUA",
"gdrive:ffhq-snapshot.pkl": "https://drive.google.com/uc?id=1QvGFQfvPXsqsiQE5jWgRM9awxfaWnoqd",
"gdrive:bedrooms-snapshot.pkl": "https://drive.google.com/uc?id=1GkmnFqwUI0X5dOnSHOFDeWg_jJAc08Za"
}
def get_path_or_url(path_or_gdrive_path):
return gdrive_urls.get(path_or_gdrive_path, path_or_gdrive_path)
def load_network(filename):
filename = get_path_or_url(filename)
with dnnlib.util.open_url(filename) as f:
network = load_network_pkl(f)
return network
def load_network_pkl(f):
data = _LegacyUnpickler(f).load()
# Legacy TensorFlow pickle => convert
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data):
tf_G, tf_D, tf_Gs = data
G = convert_tf_generator(tf_G)
D = convert_tf_discriminator(tf_D)
Gs = convert_tf_generator(tf_Gs)
data = dict(G = G, D = D, Gs = Gs)
# Validate contents
assert isinstance(data["G"], torch.nn.Module)
assert isinstance(data["D"], torch.nn.Module)
assert isinstance(data["Gs"], torch.nn.Module)
return data
#----------------------------------------------------------------------------
class _TFNetworkStub(dnnlib.EasyDict):
pass
class _LegacyUnpickler(pickle.Unpickler):
def find_class(self, module, name):
if module == "dnnlib.tflib.network" and name == "Network":
return _TFNetworkStub
return super().find_class(module, name)
def _collect_tf_params(tf_net):
tf_params = dict()
def recurse(prefix, tf_net):
for name, value in tf_net.variables:
tf_params[prefix + name] = value
for name, comp in tf_net.components.items():
recurse(prefix + name + "/", comp)
recurse("", tf_net)
return tf_params
def _populate_module_params(module, *patterns):
for name, tensor in misc.named_params_and_buffers(module):
found = False
value = None
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]):
match = re.fullmatch(pattern, name)
if match:
found = True
if value_fn is not None:
value = value_fn(*match.groups())
break
try:
assert found
if value is not None:
tensor.copy_(torch.from_numpy(np.array(value)))
except:
print(name, list(tensor.shape))
raise
#----------------------------------------------------------------------------
def convert_tf_generator(tf_G):
if tf_G.version < 4:
raise ValueError("TensorFlow pickle version too low")
# Collect kwargs
tf_kwargs = tf_G.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default = None, none = None):
known_kwargs.add(tf_name)
val = tf_kwargs.get(tf_name, default)
return val if val is not None else none
# Convert kwargs
kwargs = dnnlib.EasyDict(
z_dim = kwarg("latent_size", 512),
c_dim = kwarg("label_size", 0),
w_dim = kwarg("dlatent_size", 512),
k = kwarg("components_num", 1) + int(tf_G.static_kwargs.get("transformer", False)),
img_resolution = kwarg("resolution", 1024),
img_channels = kwarg("num_channels", 3),
mapping_kwargs = dnnlib.EasyDict(
num_layers = kwarg("mapping_layersnum", 8),
layer_dim = kwarg("mapping_dim", None),
act = kwarg("mapping_nonlinearity", "lrelu"),
lrmul = kwarg("mapping_lrmul", 0.01),
w_avg_beta = kwarg("dlatent_avg_beta", 0.995, none = 1),
resnet = kwarg("mapping_resnet", False),
ltnt2ltnt = kwarg("mapping_ltnt2ltnt", False),
transformer = kwarg("transformer", False),
num_heads = kwarg("num_heads", 1),
attention_dropout = kwarg("attention_dropout", 0.12),
ltnt_gate = kwarg("ltnt_gate", False),
use_pos = kwarg("use_pos", False),
normalize_global = False,
),
synthesis_kwargs = dnnlib.EasyDict(
channel_base = kwarg("fmap_base", 16 << 10) * 2,
channel_max = kwarg("fmap_max", 512),
architecture = kwarg("architecture", "skip"),
resample_kernel = kwarg("resample_kernel", [1,3,3,1]),
local_noise = kwarg("local_noise", True),
act = kwarg("nonlinearity", "lrelu"),
latent_stem = kwarg("latent_stem", False),
style = kwarg("style", True),
transformer = kwarg("transformer", False),
start_res = kwarg("start_res", 0),
end_res = kwarg("end_res", 8),
num_heads = kwarg("num_heads", 1),
attention_dropout = kwarg("attention_dropout", 0.12),
ltnt_gate = kwarg("ltnt_gate", False),
img_gate = kwarg("img_gate", False),
integration = kwarg("integration", "add"),
norm = kwarg("norm", None),
kmeans = kwarg("kmeans", False),
kmeans_iters = kwarg("kmeans_iters", 1),
iterative = kwarg("iterative", False),
use_pos = kwarg("use_pos", False),
pos_dim = kwarg("pos_dim", None),
pos_type = kwarg("pos_type", "sinus"),
pos_init = kwarg("pos_init", "uniform"),
pos_directions_num = kwarg("pos_directions_num", 2),
),
)
# Check for unknown kwargs
# kwarg("truncation_psi")
# kwarg("truncation_cutoff")
# kwarg("style_mixing_prob")
# kwarg("structure")
# unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
# if len(unknown_kwargs) > 0:
# raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0])
# Collect params
tf_params = _collect_tf_params(tf_G)
for name, value in list(tf_params.items()):
match = re.fullmatch(r"ToRGB_lod(\d+)/(.*)", name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f"{r}x{r}/ToRGB/{match.group(2)}"] = value
kwargs.synthesis.kwargs.architecture = "orig"
# for name, value in tf_params.items(): print(f"{name:<50s}{list(value.shape)}")
# Convert params
from training import networks
G = networks.Generator(**kwargs).eval().requires_grad_(False)
index = lambda r, i: "" if int(r) == 4 else f"{i}{['_up',''][int(i)]}"
plural = lambda s: {"queries": "query", "keys": "key", "values": "value"}[s]
global_fix = lambda s: "global/" if "global" in s else ""
_populate_module_params(G,
r"pos", lambda: tf_params["ltnt_emb/emb"],
# Mapping network
r"mapping\.w_avg", lambda: tf_params["dlatent_avg"],
r"mapping\.embed\.weight", lambda: tf_params["mapping/LabelConcat/weight"].transpose(),
r"mapping\.embed\.bias", lambda: np.zeros([tf_G.static_kwargs.get("latent_size", 512)]),
r"mapping\.([a-z_]+)\.l(\d+)\.fc(\d+)\.weight", lambda s, i, j: tf_params[f"mapping/{global_fix(s)}Dense{i}_{j}/weight"].transpose(),
r"mapping\.([a-z_]+)\.l(\d+)\.fc(\d+)\.bias", lambda s, i, j: tf_params[f"mapping/{global_fix(s)}Dense{i}_{j}/bias"],
r"mapping\.([a-z_]+)\.out_layer\.weight", lambda s: tf_params[f"mapping/{global_fix(s)}Dense3/weight"].transpose(),
r"mapping\.([a-z_]+)\.out_layer\.bias", lambda s: tf_params[f"mapping/{global_fix(s)}Dense3/bias"],
r"mapping\.mlp\.l(\d+)\.fc(\d+)\.weight", lambda i, j: tf_params[f"mapping/Dense{i}_{j}/weight"].transpose(),
r"mapping\.mlp\.l(\d+)\.fc(\d+)\.bias", lambda i, j: tf_params[f"mapping/Dense{i}_{j}/bias"],
r"mapping\.mlp\.out_layer\.weight", lambda: tf_params[f"mapping/Dense3/weight"].transpose(),
r"mapping\.mlp\.out_layer\.bias", lambda: tf_params[f"mapping/Dense3/bias"],
# Mapping ltnt2ltnt
r"mapping\.mlp\.sa(\d+)\.to_([a-z]+)\.weight", lambda i, s: tf_params[f"mapping/AttLayer_{i}/weight_{plural(s)}"].transpose(),
r"mapping\.mlp\.sa(\d+)\.to_([a-z]+)\.bias", lambda i, s: tf_params[f"mapping/AttLayer_{i}/bias_{plural(s)}"],
r"mapping\.mlp\.sa(\d+)\.([a-z]+)_pos_map\.weight", lambda i, s: tf_params[f"mapping/AttLayer_{i}/weight_{s}_pos"].transpose(),
r"mapping\.mlp\.sa(\d+)\.([a-z]+)_pos_map\.bias", lambda i, s: tf_params[f"mapping/AttLayer_{i}/bias_{s}_pos"],
r"mapping\.mlp\.sa(\d+)\.modulation\.weight", lambda i: tf_params[f"mapping/AttLayer_{i}/weight_out"].transpose(),
r"mapping\.mlp\.sa(\d+)\.modulation\.bias", lambda i: tf_params[f"mapping/AttLayer_{i}/bias_out"],
r"mapping\.mlp\.sa(\d+)\.centroids", lambda i: tf_params[f"mapping/AttLayer_{i}/toasgn_init"],
r"mapping\.mlp\.sa(\d+)\.queries2centroids", lambda i: tf_params[f"mapping/AttLayer_{i}/weight_key2"].transpose(),
r"mapping\.mlp\.sa(\d+)\.queries2centroids", lambda i: tf_params[f"mapping/AttLayer_{i}/bias_key2"],
r"mapping\.mlp\.sa(\d+)\.att_weight", lambda i: tf_params[f"mapping/AttLayer_{i}/iter_0/st_weights"],
# Synthesis Network
r"synthesis\.b4\.const", lambda: tf_params[f"synthesis/4x4/Const/const"][0],
r"synthesis\.b(\d+)\.conv0\.weight", lambda r: tf_params[f"synthesis/{r}x{r}/Conv0_up/weight"][::-1, ::-1].transpose(3, 2, 0, 1),
r"synthesis\.b(\d+)\.conv1\.weight", lambda r: tf_params[f"synthesis/{r}x{r}/Conv{index(r,1)}/weight"].transpose(3, 2, 0, 1),
r"synthesis\.b(\d+)\.conv(\d+)\.biasAct\.bias", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/bias"],
r"synthesis\.b(\d+)\.conv(\d+)\.noise_const", lambda r, i: tf_params[f"synthesis/noise{int(np.log2(int(r)))*2-5+int(i)}"][0, 0],
r"synthesis\.b(\d+)\.conv(\d+)\.noise_strength", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/noise_strength"],
r"synthesis\.b(\d+)\.conv(\d+)\.affine\.weight", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/mod_weight"].transpose(),
r"synthesis\.b(\d+)\.conv(\d+)\.affine\.bias", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/mod_bias"] + 1,
# Synthesis Network: Latents to Image
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.to_([a-z]+)\.weight", lambda r, i, s: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/weight_{plural(s)}"].transpose(),
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.to_([a-z]+)\.bias", lambda r, i, s: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/bias_{plural(s)}"],
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.([a-z]+)_pos_map\.weight", lambda r, i, s: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/weight_{s}_pos"].transpose(),
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.([a-z]+)_pos_map\.bias", lambda r, i, s: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/bias_{s}_pos"],
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.modulation\.weight", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/weight_out"].transpose(),
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.modulation\.bias", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/bias_out"],
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.centroids", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/toasgn_init"],
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.queries2centroids", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/weight_key2"].transpose(),
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.queries2centroids", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/bias_key2"],
r"synthesis\.b(\d+)\.conv(\d+)\.transformer\.att_weight", lambda r, i: tf_params[f"synthesis/{r}x{r}/Conv{index(r,i)}/AttLayer_l2n/iter_0/st_weights"],
# Synthesis Network's RGB layer
r"synthesis\.b(\d+)\.torgb\.weight", lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/weight"].transpose(3, 2, 0, 1),
r"synthesis\.b(\d+)\.torgb\.biasAct\.bias", lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/bias"],
r"synthesis\.b(\d+)\.torgb\.affine\.weight", lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_weight"].transpose(),
r"synthesis\.b(\d+)\.torgb\.affine\.bias", lambda r: tf_params[f"synthesis/{r}x{r}/ToRGB/mod_bias"] + 1,
r"synthesis\.b(\d+)\.skip\.weight", lambda r: tf_params[f"synthesis/{r}x{r}/Skip/weight"][::-1, ::-1].transpose(3, 2, 0, 1),
r"synthesis\.b256\.conv_last\.weight", lambda: tf_params[f"synthesis/256x256/ToRGB/extraLayer/weight"].transpose(3, 2, 0, 1),
r"synthesis\.b256\.conv_last\.affine\.weight", lambda: tf_params[f"synthesis/256x256/ToRGB/extraLayer/mod_weight"].transpose(),
r"synthesis\.b256\.conv_last\.affine\.bias", lambda: tf_params[f"synthesis/256x256/ToRGB/extraLayer/mod_bias"] + 1,
r"synthesis.b512.conv_last.weight", lambda: tf_params[f"synthesis/512x512/ToRGB/extraLayer/weight"].transpose(3, 2, 0, 1),
r"synthesis.b512.conv_last.affine.weight", lambda: tf_params[f"synthesis/512x512/ToRGB/extraLayer/mod_weight"].transpose(),
r"synthesis.b512.conv_last.affine.bias", lambda: tf_params[f"synthesis/512x512/ToRGB/extraLayer/mod_bias"] + 1,
r"synthesis.b1024.conv_last.weight", lambda: tf_params[f"synthesis/1024x1024/ToRGB/extraLayer/weight"].transpose(3, 2, 0, 1),
r"synthesis.b1024.conv_last.affine.weight", lambda: tf_params[f"synthesis/1024x1024/ToRGB/extraLayer/mod_weight"].transpose(),
r"synthesis.b1024.conv_last.affine.bias", lambda: tf_params[f"synthesis/1024x1024/ToRGB/extraLayer/mod_bias"] + 1,
r".*\.resample_kernel", None,
r".*\.grid_pos", None,
)
return G
#----------------------------------------------------------------------------
def convert_tf_discriminator(tf_D):
if tf_D.version < 4:
raise ValueError("TensorFlow pickle version too low")
# Collect kwargs
tf_kwargs = tf_D.static_kwargs
known_kwargs = set()
def kwarg(tf_name, default = None):
known_kwargs.add(tf_name)
return tf_kwargs.get(tf_name, default)
# Convert kwargs
kwargs = dnnlib.EasyDict(
c_dim = kwarg("label_size", 0),
img_resolution = kwarg("resolution", 1024),
img_channels = kwarg("num_channels", 3),
architecture = kwarg("architecture", "resnet"),
channel_base = kwarg("fmap_base", 16 << 10) * 2,
channel_max = kwarg("fmap_max", 512),
block_kwargs = dnnlib.EasyDict(
act = kwarg("nonlinearity", "lrelu"),
resample_kernel = kwarg("resample_kernel", [1,3,3,1]),
),
epilogue_kwargs = dnnlib.EasyDict(
act = kwarg("nonlinearity", "lrelu"),
mbstd_group_size = kwarg("mbstd_group_size", 4),
mbstd_num_channels = kwarg("mbstd_num_features", 1),
),
)
# Check for unknown kwargs
# kwarg("structure")
# unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs)
# if len(unknown_kwargs) > 0:
# raise ValueError("Unknown TensorFlow kwarg", unknown_kwargs[0])
# Collect params
tf_params = _collect_tf_params(tf_D)
for name, value in list(tf_params.items()):
match = re.fullmatch(r"FromRGB_lod(\d+)/(.*)", name)
if match:
r = kwargs.img_resolution // (2 ** int(match.group(1)))
tf_params[f"{r}x{r}/FromRGB/{match.group(2)}"] = value
kwargs.architecture = "orig"
#for name, value in tf_params.items(): print(f"{name:<50s}{list(value.shape)}")
# Convert params
from training import networks
D = networks.Discriminator(**kwargs).eval().requires_grad_(False)
_populate_module_params(D,
r"b(\d+)\.fromrgb\.weight", lambda r: tf_params[f"{r}x{r}/FromRGB/weight"].transpose(3, 2, 0, 1),
r"b(\d+)\.fromrgb\.biasAct\.bias", lambda r: tf_params[f"{r}x{r}/FromRGB/bias"],
r"b(\d+)\.conv(\d+)\.weight", lambda r, i: tf_params[f"{r}x{r}/Conv{i}{['','_down'][int(i)]}/weight"].transpose(3, 2, 0, 1),
r"b(\d+)\.conv(\d+)\.biasAct\.bias", lambda r, i: tf_params[f"{r}x{r}/Conv{i}{['','_down'][int(i)]}/bias"],
r"b(\d+)\.skip\.weight", lambda r: tf_params[f"{r}x{r}/Skip/weight"].transpose(3, 2, 0, 1),
r"b4\.conv\.weight", lambda: tf_params[f"4x4/Conv/weight"].transpose(3, 2, 0, 1),
r"b4\.conv\.biasAct\.bias", lambda: tf_params[f"4x4/Conv/bias"],
r"b4\.fc\.weight", lambda: tf_params[f"4x4/Dense0/weight"].transpose(),
r"b4\.fc\.bias", lambda: tf_params[f"4x4/Dense0/bias"],
r"b4\.out\.weight", lambda: tf_params[f"Output/weight"].transpose(),
r"b4\.out\.bias", lambda: tf_params[f"Output/bias"],
r".*\.resample_kernel", None,
)
return D
#----------------------------------------------------------------------------
# @click.command()
# @click.option("--source", help="Input pickle", required=True, metavar="PATH")
# @click.option("--dest", help="Output pickle", required=True, metavar="PATH")
def convert_network_pickle(source, dest):
"""Convert legacy network pickle into the native PyTorch format.
The tool is able to load the main network configurations exported
using the TensorFlow version of GANFormer.
Example: python loader.py --source=checkpoint-TF.pkl --dest=checkpoint.pkl
"""
print(f"Loading {source}...")
with dnnlib.util.open_url(source) as f:
data = load_network_pkl(f)
print(f"Saving {dest}...")
with open(dest, "wb") as f:
pickle.dump(data, f)
print("Done.")
if __name__ == "__main__":
ro = '/home/na/1_Face_morphing/1_code/2_morphing/5_gansformer-main_V2_256/'
source = ro + 'models/ffhq-snapshot-1024.pkl'
# 'cityscapes-snapshot-2048.pkl
dest = ro + 'pytorch_version/models/ffhq-snapshot-1024.pkl'
convert_network_pickle(source, dest)
# gdrive:clevr-snapshot.pkl":
# "gdrive:cityscapes-snapshot.pkl":
# "gdrive:ffhq-snapshot.pkl":
# "gdrive:bedrooms-snapshot.pkl":