Skip to content

Conversation

@nstester
Copy link
Owner

@nstester nstester merged commit 400f6ca into nstester:master Mar 23, 2021
nstester pushed a commit that referenced this pull request Apr 27, 2021
The insn has extraneous operand #3 that is aliased in RTL to operand #0
with a constraint.  The operands specify a single-bit field in memory
that the machine instruction produced boths reads for the purpose of
determining whether to branch or not and either clears or sets according
to the machine operation selected with the `ccss' iterator.  The caller
of the insn is supposed to supply the same rtx for both operands.

This odd arrangement happens to work with old reload, but breaks with
libatomic if LRA is used instead:

.../libatomic/flag.c: In function 'atomic_flag_test_and_set':
.../libatomic/flag.c:36:1: error: unable to generate reloads for:
   36 | }
      | ^
(jump_insn 7 6 19 2 (unspec_volatile [
            (set (pc)
                (if_then_else (eq (zero_extract:SI (mem/v:QI (reg:SI 27) [-1  S1 A8])
                            (const_int 1 [0x1])
                            (const_int 0 [0]))
                        (const_int 1 [0x1]))
                    (label_ref:SI 25)
                    (pc)))
            (set (zero_extract:SI (mem/v:QI (reg:SI 28) [-1  S1 A8])
                    (const_int 1 [0x1])
                    (const_int 0 [0]))
                (const_int 1 [0x1]))
        ] 100) ".../libatomic/flag.c":35:10 669 {jbbssiqi}
     (nil)
 -> 25)
during RTL pass: reload
.../libatomic/flag.c:36:1: internal compiler error: in curr_insn_transform, at lra-constraints.c:4098
0x1112c587 _fatal_insn(char const*, rtx_def const*, char const*, int, char const*)
	.../gcc/rtl-error.c:108
0x10ee6563 curr_insn_transform
	.../gcc/lra-constraints.c:4098
0x10eeaf87 lra_constraints(bool)
	.../gcc/lra-constraints.c:5133
0x10ec97e3 lra(_IO_FILE*)
	.../gcc/lra.c:2336
0x10e4633f do_reload
	.../gcc/ira.c:5827
0x10e46b27 execute
	.../gcc/ira.c:6013
Please submit a full bug report,
with preprocessed source if appropriate.
Please include the complete backtrace with any bug report.
See <https://gcc.gnu.org/bugs/> for instructions.

Switch to using `match_dup' as expected then for a machine instruction
that in its encoding only has one actual operand in for the single-bit
field.

	gcc/
	* config/vax/builtins.md (jbb<ccss>i<mode>): Remove operand #3.
	(sync_lock_test_and_set<mode>): Adjust accordingly.
	(sync_lock_release<mode>): Likewise.
nstester pushed a commit that referenced this pull request May 7, 2021
gcc/ada/

	* atree.h (Slots_Ptr): Change pointed-to type to any_slot.
	* fe.h (Get_RT_Exception_Name): Change type of parameter.
	* namet.ads (Name_Entry): Mark non-boolean components as aliased,
	reorder the boolean components and add an explicit Spare component.
	* namet.adb (Name_Enter): Adjust aggregate accordingly.
	(Name_Find): Likewise.
	(Reinitialize): Likewise.
	* namet.h (struct Name_Entry): Adjust accordingly.
	(Names_Ptr): Use correct type.
	(Name_Chars_Ptr): Likewise.
	(Get_Name_String): Fix declaration and adjust to above changes.
	* types.ads (RT_Exception_Code): Add pragma Convention C.
	* types.h (Column_Number_Type): Fix original type.
	(slot): Rename union type to...
	(any_slot): ...this and adjust assertion accordingly.
	(RT_Exception_Code): New enumeration type.
	* uintp.ads (Uint_Entry): Mark components as aliased.
	* uintp.h (Uints_Ptr):  Use correct type.
	(Udigits_Ptr): Likewise.
	* gcc-interface/gigi.h (gigi): Adjust name and type of parameter.
	* gcc-interface/cuintp.c (UI_To_gnu): Adjust references to Uints_Ptr
	and Udigits_Ptr.
	* gcc-interface/trans.c (Slots_Ptr): Adjust pointed-to type.
	(gigi): Adjust type of parameter.
	(build_raise_check): Add cast in call to Get_RT_Exception_Name.
nstester pushed a commit that referenced this pull request Jun 14, 2021
The fixed error is:

==21166==ERROR: AddressSanitizer: alloc-dealloc-mismatch (operator new [] vs operator delete) on 0x60300000d900
    #0 0x7367d7 in operator delete(void*, unsigned long) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/libsanitizer/asan/asan_new_delete.cpp:172
    #1 0x3b82e6e in pointer_equiv_analyzer::~pointer_equiv_analyzer() /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/gimple-ssa-evrp.c:161
    #2 0x3b83387 in hybrid_folder::~hybrid_folder() /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/gimple-ssa-evrp.c:517
    #3 0x3b83387 in execute_early_vrp /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/gimple-ssa-evrp.c:686
    #4 0x1790611 in execute_one_pass(opt_pass*) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/passes.c:2567
    gcc-mirror#5 0x1792003 in execute_pass_list_1 /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/passes.c:2656
    gcc-mirror#6 0x1792029 in execute_pass_list_1 /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/passes.c:2657
    gcc-mirror#7 0x179209f in execute_pass_list(function*, opt_pass*) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/passes.c:2667
    gcc-mirror#8 0x178a5f3 in do_per_function_toporder(void (*)(function*, void*), void*) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/passes.c:1773
    gcc-mirror#9 0x1792fac in do_per_function_toporder(void (*)(function*, void*), void*) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/plugin.h:191
    gcc-mirror#10 0x1792fac in execute_ipa_pass_list(opt_pass*) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/passes.c:3001
    gcc-mirror#11 0xc525fc in ipa_passes /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/cgraphunit.c:2154
    gcc-mirror#12 0xc525fc in symbol_table::compile() /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/cgraphunit.c:2289
    gcc-mirror#13 0xc5a096 in symbol_table::compile() /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/cgraphunit.c:2269
    gcc-mirror#14 0xc5a096 in symbol_table::finalize_compilation_unit() /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/cgraphunit.c:2537
    gcc-mirror#15 0x1a7a17c in compile_file /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/toplev.c:482
    gcc-mirror#16 0x69c758 in do_compile /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/toplev.c:2210
    gcc-mirror#17 0x69c758 in toplev::main(int, char**) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/toplev.c:2349
    gcc-mirror#18 0x6a932a in main /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/main.c:39
    gcc-mirror#19 0x7ffff7820b34 in __libc_start_main ../csu/libc-start.c:332
    gcc-mirror#20 0x6aa5fd in _start (/home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/objdir/gcc/cc1+0x6aa5fd)

0x60300000d900 is located 0 bytes inside of 32-byte region [0x60300000d900,0x60300000d920)
allocated by thread T0 here:
    #0 0x735ab7 in operator new[](unsigned long) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/libsanitizer/asan/asan_new_delete.cpp:102
    #1 0x3b82dac in pointer_equiv_analyzer::pointer_equiv_analyzer(gimple_ranger*) /home/marxin/BIG/buildbot/buildworker/marxinbox-gcc-asan/build/gcc/gimple-ssa-evrp.c:156

gcc/ChangeLog:

	* gimple-ssa-evrp.c (pointer_equiv_analyzer::~pointer_equiv_analyzer): Use delete[].
nstester pushed a commit that referenced this pull request Nov 26, 2021
Fixes:

==129444==ERROR: AddressSanitizer: global-buffer-overflow on address 0x00000666ca5c at pc 0x000000ef094b bp 0x7fffffff8180 sp 0x7fffffff8178
READ of size 4 at 0x00000666ca5c thread T0
    #0 0xef094a in parse_optimize_options ../../gcc/d/d-attribs.cc:855
    #1 0xef0d36 in d_handle_optimize_attribute ../../gcc/d/d-attribs.cc:916
    #2 0xef107e in d_handle_optimize_attribute ../../gcc/d/d-attribs.cc:887
    #3 0xff85b1 in decl_attributes(tree_node**, tree_node*, int, tree_node*) ../../gcc/attribs.c:829
    #4 0xef2a91 in apply_user_attributes(Dsymbol*, tree_node*) ../../gcc/d/d-attribs.cc:427
    gcc-mirror#5 0xf7b7f3 in get_symbol_decl(Declaration*) ../../gcc/d/decl.cc:1346
    gcc-mirror#6 0xf87bc7 in get_symbol_decl(Declaration*) ../../gcc/d/decl.cc:967
    gcc-mirror#7 0xf87bc7 in DeclVisitor::visit(FuncDeclaration*) ../../gcc/d/decl.cc:808
    gcc-mirror#8 0xf83db5 in DeclVisitor::build_dsymbol(Dsymbol*) ../../gcc/d/decl.cc:146

for the following test-case: gcc/testsuite/gdc.dg/attr_optimize1.d.

gcc/d/ChangeLog:

	* d-attribs.cc (parse_optimize_options): Check index before
	accessing cl_options.
nstester pushed a commit that referenced this pull request Dec 30, 2021
…imize or target pragmas [PR103012]

The following testcases ICE when an optimize or target pragma
is followed by a long line (4096+ chars).
This is because on such long lines we can't use columns anymore,
but the cpp_define calls performed by c_cpp_builtins_optimize_pragma
or from the backend hooks for target pragma are done on temporary
buffers and expect to get columns from whatever line they appear on
(which happens to be the long line after optimize/target pragma),
and we run into:
 #0  fancy_abort (file=0x3abec67 "../../libcpp/line-map.c", line=502, function=0x3abecfc "linemap_add") at ../../gcc/diagnostic.c:1986
 #1  0x0000000002e7c335 in linemap_add (set=0x7ffff7fca000, reason=LC_RENAME, sysp=0, to_file=0x41287a0 "pr103012.i", to_line=3) at ../../libcpp/line-map.c:502
 #2  0x0000000002e7cc24 in linemap_line_start (set=0x7ffff7fca000, to_line=3, max_column_hint=128) at ../../libcpp/line-map.c:827
 #3  0x0000000002e7ce2b in linemap_position_for_column (set=0x7ffff7fca000, to_column=1) at ../../libcpp/line-map.c:898
 #4  0x0000000002e771f9 in _cpp_lex_direct (pfile=0x40c3b60) at ../../libcpp/lex.c:3592
 gcc-mirror#5  0x0000000002e76c3e in _cpp_lex_token (pfile=0x40c3b60) at ../../libcpp/lex.c:3394
 gcc-mirror#6  0x0000000002e610ef in lex_macro_node (pfile=0x40c3b60, is_def_or_undef=true) at ../../libcpp/directives.c:601
 gcc-mirror#7  0x0000000002e61226 in do_define (pfile=0x40c3b60) at ../../libcpp/directives.c:639
 gcc-mirror#8  0x0000000002e610b2 in run_directive (pfile=0x40c3b60, dir_no=0, buf=0x7fffffffd430 "__OPTIMIZE__ 1\n", count=14) at ../../libcpp/directives.c:589
 gcc-mirror#9  0x0000000002e650c1 in cpp_define (pfile=0x40c3b60, str=0x2f784d1 "__OPTIMIZE__") at ../../libcpp/directives.c:2513
 gcc-mirror#10 0x0000000002e65100 in cpp_define_unused (pfile=0x40c3b60, str=0x2f784d1 "__OPTIMIZE__") at ../../libcpp/directives.c:2522
 gcc-mirror#11 0x0000000000f50685 in c_cpp_builtins_optimize_pragma (pfile=0x40c3b60, prev_tree=<optimization_node 0x7fffea042000>, cur_tree=<optimization_node 0x7fffea042020>)
     at ../../gcc/c-family/c-cppbuiltin.c:600
assertion that LC_RENAME doesn't happen first.

I think the right fix is emit those predefined macros upon
optimize/target pragmas with BUILTINS_LOCATION, like we already do
for those macros at the start of the TU, they don't appear in columns
of the next line after it.  Another possibility would be to force them
at the location of the pragma.

2021-12-30  Jakub Jelinek  <jakub@redhat.com>

	PR c++/103012
gcc/
	* config/i386/i386-c.c (ix86_pragma_target_parse): Perform
	cpp_define/cpp_undef calls with forced token locations
	BUILTINS_LOCATION.
	* config/arm/arm-c.c (arm_pragma_target_parse): Likewise.
	* config/aarch64/aarch64-c.c (aarch64_pragma_target_parse): Likewise.
	* config/s390/s390-c.c (s390_pragma_target_parse): Likewise.
gcc/c-family/
	* c-cppbuiltin.c (c_cpp_builtins_optimize_pragma): Perform
	cpp_define_unused/cpp_undef calls with forced token locations
	BUILTINS_LOCATION.
gcc/testsuite/
	PR c++/103012
	* g++.dg/cpp/pr103012.C: New test.
	* g++.target/i386/pr103012.C: New test.
nstester pushed a commit that referenced this pull request Jan 21, 2022
This is a "canonical types differ for identical types" ICE, which started
with r11-4682.  It's a bit tricky to explain.  Consider:

  template <typename T> struct S {
    S<T> bar() noexcept(T::value);  // #1
    S<T> foo() noexcept(T::value);  // #2
  };

  template <typename T> S<T> S<T>::foo() noexcept(T::value) {}  // #3

We ICE because #3 and #2 have the same type, but their canonical types
differ: TYPE_CANONICAL (#3) == #2 but TYPE_CANONICAL (#2) == #1.

The member functions #1 and #2 have the same type.  However, since their
noexcept-specifier is deferred, when parsing them, we create a variant for
both of them, because DEFERRED_PARSE cannot be compared.  In other words,
build_cp_fntype_variant's

  tree v = TYPE_MAIN_VARIANT (type);
  for (; v; v = TYPE_NEXT_VARIANT (v))
    if (cp_check_qualified_type (v, type, type_quals, rqual, raises, late))
      return v;

will *not* find an existing variant when creating a method_type for #2, so we
have to create a new one.

But then we perform delayed parsing and call fixup_deferred_exception_variants
for #1 and #2.  f_d_e_v will replace TYPE_RAISES_EXCEPTIONS with the newly
parsed noexcept-specifier.  It also sets TYPE_CANONICAL (#2) to #1.  Both
noexcepts turned out to be the same, so now we have two equivalent variants in
the list!  I.e.,

+-----------------+      +-----------------+      +-----------------+
|      main       |      |      #2         |      |      #1         |
| S S::<T379>(S*) |----->| S S::<T37c>(S*) |----->| S S::<T37a>(S*) |----->NULL
|    -            |      |  noex(T::value) |      |  noex(T::value) |
+-----------------+      +-----------------+      +-----------------+

Then we get to #3.  As for #1 and #2, grokdeclarator calls build_memfn_type,
which ends up calling build_cp_fntype_variant, which will use the loop
above to look for an existing variant.  The first one that matches
cp_check_qualified_type will be used, so we use #2 rather than #1, and the
TYPE_CANONICAL mismatch follows.  Hopefully that makes sense.

As for the fix, I didn't think I could rewrite the method_type #2 with #1
because the type may have escaped via decltype.  So my approach is to
elide #2 from the list, so when looking for a matching variant, we always
find #1 (#2 remains live though, which admittedly sounds sort of dodgy).

	PR c++/101715

gcc/cp/ChangeLog:

	* tree.cc (fixup_deferred_exception_variants): Remove duplicate
	variants after parsing the exception specifications.

gcc/testsuite/ChangeLog:

	* g++.dg/cpp0x/noexcept72.C: New test.
	* g++.dg/cpp0x/noexcept73.C: New test.
nstester pushed a commit that referenced this pull request Feb 22, 2022
…04617]

On
 #define A(n) int foo1##n(void) { return 1##n; }
 #define B(n) A(n##0) A(n##1) A(n##2) A(n##3) A(n##4) A(n#gcc-mirror#5) A(n#gcc-mirror#6) A(n#gcc-mirror#7) A(n#gcc-mirror#8) A(n#gcc-mirror#9)
 #define C(n) B(n##0) B(n##1) B(n##2) B(n##3) B(n##4) B(n#gcc-mirror#5) B(n#gcc-mirror#6) B(n#gcc-mirror#7) B(n#gcc-mirror#8) B(n#gcc-mirror#9)
 #define D(n) C(n##0) C(n##1) C(n##2) C(n##3) C(n##4) C(n#gcc-mirror#5) C(n#gcc-mirror#6) C(n#gcc-mirror#7) C(n#gcc-mirror#8) C(n#gcc-mirror#9)
 #define E(n) D(n##0) D(n##1) D(n##2) D(n##3) D(n##4) D(n#gcc-mirror#5) D(n#gcc-mirror#6) D(n#gcc-mirror#7) D(n#gcc-mirror#8) D(n#gcc-mirror#9)
 E(0) E(1) E(2) D(30) D(31) C(320) C(321) C(322) C(323) C(324) C(325)
 B(3260) B(3261) B(3262) B(3263) A(32640) A(32641) A(32642)
testcase with
./xgcc -B ./ -c -g -fpic -ffat-lto-objects -flto  -O0 -o foo1.o foo1.c -ffunction-sections
./xgcc -B ./ -shared -g -fpic -flto -O0 -o foo1.so foo1.o
/tmp/ccTW8mBm.debug.temp.o: file not recognized: file format not recognized
(testcase too slow to be included into testsuite).
The problem is clearly reported by readelf:
readelf: foo1.o.debug.temp.o: Warning: Section 2 has an out of range sh_link value of 65321
readelf: foo1.o.debug.temp.o: Warning: Section 5 has an out of range sh_link value of 65321
readelf: foo1.o.debug.temp.o: Warning: Section 10 has an out of range sh_link value of 65323
readelf: foo1.o.debug.temp.o: Warning: [ 2]: Link field (65321) should index a symtab section.
readelf: foo1.o.debug.temp.o: Warning: [ 5]: Link field (65321) should index a symtab section.
readelf: foo1.o.debug.temp.o: Warning: [10]: Link field (65323) should index a string section.
because simple_object_elf_copy_lto_debug_sections doesn't adjust sh_info and
sh_link fields in ElfNN_Shdr if they are in between SHN_{LO,HI}RESERVE
inclusive.  Not adjusting those is incorrect though, SHN_{LO,HI}RESERVE
range is only relevant to the 16-bit fields, mainly st_shndx in ElfNN_Sym
where if one needs >= SHN_LORESERVE section number, SHN_XINDEX should be
used instead and .symtab_shndx section should contain the real section
index, and in ElfNN_Ehdr e_shnum and e_shstrndx fields, where if >=
SHN_LORESERVE value is needed it should put those into
Shdr[0].sh_{size,link}.  But, sh_{link,info} are 32-bit fields which can
contain any section index.

Note, as simple-object-elf.c mentions, binutils from 2.12 to 2.18 (so before
2011) used to mishandle the > 63.75K sections case and assumed there is a
hole in between the sections, but what
simple_object_elf_copy_lto_debug_sections does wouldn't help in that case
for the debug temp object creation, we'd need to detect the case also in
that routine and take it into account in the remapping etc.  I think
it is not worth it given that it is over 10 years, if somebody needs
63.75K or more sections, better use more recent binutils.

2022-02-22  Jakub Jelinek  <jakub@redhat.com>

	PR lto/104617
	* simple-object-elf.c (simple_object_elf_match): Fix up URL
	in comment.
	(simple_object_elf_copy_lto_debug_sections): Remap sh_info and
	sh_link even if they are in the SHN_LORESERVE .. SHN_HIRESERVE
	range (inclusive).
nstester pushed a commit that referenced this pull request May 18, 2022
Move pr83660.C to g++.target.  As comment #3 of PR83660,
rename it to c isn't one option.

gcc/testsuite/ChangeLog:

	* gcc.target/powerpc/pr83660.C: Moved to...
	* g++.target/powerpc/pr83660.C: ...here.
nstester pushed a commit that referenced this pull request Jun 3, 2022
This patch makes us avoid substituting into the TEMPLATE_PARM_CONSTRAINTS
of each template parameter except as necessary for declaration matching,
like we already do for the other constituent constraints of a declaration.

This patch also improves the CA104 implementation of explicit
specialization matching of a constrained function template inside a
class template, by considering the function's combined constraints
instead of just its trailing constraints.  This allows us to correctly
handle the first three explicit specializations in concepts-spec2.C
below, but because we compare the constraints as a whole, it means we
incorrectly accept the fourth explicit specialization which writes #3's
constraints in a different way.  For complete correctness here,
determine_specialization should use tsubst_each_template_parm_constraints
and template_parameter_heads_equivalent_p.

	PR c++/100374

gcc/cp/ChangeLog:

	* pt.cc (determine_specialization): Compare overall constraints
	not just the trailing constraints.
	(tsubst_each_template_parm_constraints): Define.
	(tsubst_friend_function): Use it.
	(tsubst_friend_class): Use it.
	(tsubst_template_parm): Don't substitute TEMPLATE_PARM_CONSTRAINTS.

gcc/testsuite/ChangeLog:

	* g++.dg/cpp2a/concepts-spec2.C: New test.
	* g++.dg/cpp2a/concepts-template-parm11.C: New test.
nstester pushed a commit that referenced this pull request Mar 28, 2023
This is a regression present on the mainline and 12 branch at -O2, but the
issue is related to vectorization so was present at -O3 in earlier versions.

The vcondu expander that was added for VIS 3 more than a decade ago does not
fully work, because it does not filter out the unsigned condition codes (the
instruction is an UNSPEC that accepts only signed condition codes).

While I was at it, I also added the missing vcond and vcondu expanders for
the new comparison instructions that were added in VIS 4.

gcc/
	PR target/109140
	* config/sparc/sparc.cc (sparc_expand_vcond): Call signed_condition
	on operand #3 to get the final condition code.  Use std::swap.
	* config/sparc/sparc.md (vcondv8qiv8qi): New VIS 4 expander.
	(fucmp<gcond:code>8<P:mode>_vis): Move around.
	(fpcmpu<gcond:code><GCM:gcm_name><P:mode>_vis): Likewise.
	(vcondu<GCM:mode><GCM:mode>): New VIS 4 expander.

gcc/testsuite/
	* gcc.target/sparc/20230328-1.c: New test.
	* gcc.target/sparc/20230328-2.c: Likewise.
	* gcc.target/sparc/20230328-3.c: Likewise.
	* gcc.target/sparc/20230328-4.c: Likewise.
nstester pushed a commit that referenced this pull request May 2, 2023
I noticed that for member class templates of a class template we were
unnecessarily substituting both the template and its type.  Avoiding that
duplication speeds compilation of this silly testcase from ~12s to ~9s on my
laptop.  It's unlikely to make a difference on any real code, but the
simplification is also nice.

We still need to clear CLASSTYPE_USE_TEMPLATE on the partial instantiation
of the template class, but it makes more sense to do that in
tsubst_template_decl anyway.

  #define NC(X)					\
    template <class U> struct X##1;		\
    template <class U> struct X##2;		\
    template <class U> struct X##3;		\
    template <class U> struct X##4;		\
    template <class U> struct X#gcc-mirror#5;		\
    template <class U> struct X#gcc-mirror#6;
  #define NC2(X) NC(X##a) NC(X##b) NC(X##c) NC(X##d) NC(X##e) NC(X##f)
  #define NC3(X) NC2(X##A) NC2(X##B) NC2(X##C) NC2(X##D) NC2(X##E)
  template <int I> struct A
  {
    NC3(am)
  };
  template <class...Ts> void sink(Ts...);
  template <int...Is> void g()
  {
    sink(A<Is>()...);
  }
  template <int I> void f()
  {
    g<__integer_pack(I)...>();
  }
  int main()
  {
    f<1000>();
  }

gcc/cp/ChangeLog:

	* pt.cc (instantiate_class_template): Skip the RECORD_TYPE
	of a class template.
	(tsubst_template_decl): Clear CLASSTYPE_USE_TEMPLATE.
nstester pushed a commit that referenced this pull request Aug 8, 2023
Hi, Richard and Richi.

Base on the suggestions from Richard:
https://gcc.gnu.org/pipermail/gcc-patches/2023-July/625396.html

This patch choose (1) approach that Richard provided, meaning:

RVV implements cond_* optabs as expanders.  RVV therefore supports
both IFN_COND_ADD and IFN_COND_LEN_ADD.  No dummy length arguments
are needed at the gimple level.

Such approach can make codes much cleaner and reasonable.

Consider this following case:
void foo (float * __restrict a, float * __restrict b, int * __restrict cond, int n)
{
  for (int i = 0; i < n; i++)
    if (cond[i])
      a[i] = b[i] + a[i];
}

Output of RISC-V (32-bits) gcc (trunk) (Compiler #3)
<source>:5:21: missed: couldn't vectorize loop
<source>:5:21: missed: not vectorized: control flow in loop.

ARM SVE:

...
mask__27.10_51 = vect__4.9_49 != { 0, ... };
...
vec_mask_and_55 = loop_mask_49 & mask__27.10_51;
...
vect__9.17_62 = .COND_ADD (vec_mask_and_55, vect__6.13_56, vect__8.16_60, vect__6.13_56);

For RVV, we want IR as follows:

...
_68 = .SELECT_VL (ivtmp_66, POLY_INT_CST [4, 4]);
...
mask__27.10_51 = vect__4.9_49 != { 0, ... };
...
vect__9.17_60 = .COND_LEN_ADD (mask__27.10_51, vect__6.13_55, vect__8.16_59, vect__6.13_55, _68, 0);
...

Both len and mask of COND_LEN_ADD are real not dummy.

This patch has been fully tested in RISC-V port with supporting both COND_* and COND_LEN_*.

And also, Bootstrap and Regression on X86 passed.

OK for trunk?

gcc/ChangeLog:

	* internal-fn.cc (get_len_internal_fn): New function.
	(DEF_INTERNAL_COND_FN): Ditto.
	(DEF_INTERNAL_SIGNED_COND_FN): Ditto.
	* internal-fn.h (get_len_internal_fn): Ditto.
	* tree-vect-stmts.cc (vectorizable_call): Add CALL auto-vectorization.
sys-ceuplift pushed a commit that referenced this pull request Sep 7, 2024
…o_debug_section [PR116614]

cat abc.C
  #define A(n) struct T##n {} t##n;
  #define B(n) A(n##0) A(n##1) A(n##2) A(n##3) A(n##4) A(n#gcc-mirror#5) A(n#gcc-mirror#6) A(n#gcc-mirror#7) A(n#gcc-mirror#8) A(n#gcc-mirror#9)
  #define C(n) B(n##0) B(n##1) B(n##2) B(n##3) B(n##4) B(n#gcc-mirror#5) B(n#gcc-mirror#6) B(n#gcc-mirror#7) B(n#gcc-mirror#8) B(n#gcc-mirror#9)
  #define D(n) C(n##0) C(n##1) C(n##2) C(n##3) C(n##4) C(n#gcc-mirror#5) C(n#gcc-mirror#6) C(n#gcc-mirror#7) C(n#gcc-mirror#8) C(n#gcc-mirror#9)
  #define E(n) D(n##0) D(n##1) D(n##2) D(n##3) D(n##4) D(n#gcc-mirror#5) D(n#gcc-mirror#6) D(n#gcc-mirror#7) D(n#gcc-mirror#8) D(n#gcc-mirror#9)
  E(1) E(2) E(3)
  int main () { return 0; }
./xg++ -B ./ -o abc{.o,.C} -flto -flto-partition=1to1 -O2 -g -fdebug-types-section -c
./xgcc -B ./ -o abc{,.o} -flto -flto-partition=1to1 -O2
(not included in testsuite as it takes a while to compile) FAILs with
lto-wrapper: fatal error: Too many copied sections: Operation not supported
compilation terminated.
/usr/bin/ld: error: lto-wrapper failed
collect2: error: ld returned 1 exit status

The following patch fixes that.  Most of the 64K+ section support for
reading and writing was already there years ago (and especially reading used
quite often already) and a further bug fixed in it in the PR104617 fix.

Yet, the fix isn't solely about removing the
  if (new_i - 1 >= SHN_LORESERVE)
    {
      *err = ENOTSUP;
      return "Too many copied sections";
    }
5 lines, the missing part was that the function only handled reading of
the .symtab_shndx section but not copying/updating of it.
If the result has less than 64K-epsilon sections, that actually wasn't
needed, but e.g. with -fdebug-types-section one can exceed that pretty
easily (reported to us on WebKitGtk build on ppc64le).
Updating the section is slightly more complicated, because it basically
needs to be done in lock step with updating the .symtab section, if one
doesn't need to use SHN_XINDEX in there, the section should (or should be
updated to) contain SHN_UNDEF entry, otherwise needs to have whatever would
be overwise stored but couldn't fit.  But repeating due to that all the
symtab decisions what to discard and how to rewrite it would be ugly.

So, the patch instead emits the .symtab_shndx section (or sections) last
and prepares the content during the .symtab processing and in a second
pass when going just through .symtab_shndx sections just uses the saved
content.

2024-09-07  Jakub Jelinek  <jakub@redhat.com>

	PR lto/116614
	* simple-object-elf.c (SHN_COMMON): Align comment with neighbouring
	comments.
	(SHN_HIRESERVE): Use uppercase hex digits instead of lowercase for
	consistency.
	(simple_object_elf_find_sections): Formatting fixes.
	(simple_object_elf_fetch_attributes): Likewise.
	(simple_object_elf_attributes_merge): Likewise.
	(simple_object_elf_start_write): Likewise.
	(simple_object_elf_write_ehdr): Likewise.
	(simple_object_elf_write_shdr): Likewise.
	(simple_object_elf_write_to_file): Likewise.
	(simple_object_elf_copy_lto_debug_section): Likewise.  Don't fail for
	new_i - 1 >= SHN_LORESERVE, instead arrange in that case to copy
	over .symtab_shndx sections, though emit those last and compute their
	section content when processing associated .symtab sections.  Handle
	simple_object_internal_read failure even in the .symtab_shndx reading
	case.
sys-ceuplift pushed a commit that referenced this pull request Oct 9, 2024
Whenever C1 and C2 are integer constants, X is of a wrapping type, and
cmp is a relational operator, the expression X +- C1 cmp C2 can be
simplified in the following cases:

(a) If cmp is <= and C2 -+ C1 == +INF(1), we can transform the initial
comparison in the following way:
   X +- C1 <= C2
   -INF <= X +- C1 <= C2 (add left hand side which holds for any X, C1)
   -INF -+ C1 <= X <= C2 -+ C1 (add -+C1 to all 3 expressions)
   -INF -+ C1 <= X <= +INF (due to (1))
   -INF -+ C1 <= X (eliminate the right hand side since it holds for any X)

(b) By analogy, if cmp if >= and C2 -+ C1 == -INF(1), use the following
sequence of transformations:

   X +- C1 >= C2
   +INF >= X +- C1 >= C2 (add left hand side which holds for any X, C1)
   +INF -+ C1 >= X >= C2 -+ C1 (add -+C1 to all 3 expressions)
   +INF -+ C1 >= X >= -INF (due to (1))
   +INF -+ C1 >= X (eliminate the right hand side since it holds for any X)

(c) The > and < cases are negations of (a) and (b), respectively.

This transformation allows to occasionally save add / sub instructions,
for instance the expression

3 + (uint32_t)f() < 2

compiles to

cmn     w0, #4
cset    w0, ls

instead of

add     w0, w0, 3
cmp     w0, 2
cset    w0, ls

on aarch64.

Testcases that go together with this patch have been split into two
separate files, one containing testcases for unsigned variables and the
other for wrapping signed ones (and thus compiled with -fwrapv).
Additionally, one aarch64 test has been adjusted since the patch has
caused the generated code to change from

cmn     w0, #2
csinc   w0, w1, wzr, cc   (x < -2)

to

cmn     w0, #3
csinc   w0, w1, wzr, cs   (x <= -3)

This patch has been bootstrapped and regtested on aarch64, x86_64, and
i386, and additionally regtested on riscv32.

gcc/ChangeLog:

	PR tree-optimization/116024
	* match.pd: New transformation around integer comparison.

gcc/testsuite/ChangeLog:

	* gcc.dg/tree-ssa/pr116024-2.c: New test.
	* gcc.dg/tree-ssa/pr116024-2-fwrapv.c: Ditto.
	* gcc.target/aarch64/gtu_to_ltu_cmp_1.c: Adjust.
sys-ceuplift pushed a commit that referenced this pull request Oct 24, 2024
This patch folds svindex with constant arguments into a vector series.
We implemented this in svindex_impl::fold using the function build_vec_series.
For example,
svuint64_t f1 ()
{
  return svindex_u642 (10, 3);
}
compiled with -O2 -march=armv8.2-a+sve, is folded to {10, 13, 16, ...}
in the gimple pass lower.
This optimization benefits cases where svindex is used in combination with
other gimple-level optimizations.
For example,
svuint64_t f2 ()
{
    return svmul_x (svptrue_b64 (), svindex_u64 (10, 3), 5);
}
has previously been compiled to
f2:
        index   z0.d, gcc-mirror#10, #3
        mul     z0.d, z0.d, gcc-mirror#5
        ret
Now, it is compiled to
f2:
        mov     x0, 50
        index   z0.d, x0, gcc-mirror#15
        ret

We added test cases checking
- the application of the transform during gimple for constant arguments,
- the interaction with another gimple-level optimization.

The patch was bootstrapped and regtested on aarch64-linux-gnu, no regression.
OK for mainline?

Signed-off-by: Jennifer Schmitz <jschmitz@nvidia.com>

gcc/
	* config/aarch64/aarch64-sve-builtins-base.cc
	(svindex_impl::fold): Add constant folding.

gcc/testsuite/
	* gcc.target/aarch64/sve/index_const_fold.c: New test.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants