forked from gpoesia/minbert-default-final-project
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimizer.py
88 lines (73 loc) · 3.61 KB
/
optimizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
from typing import Callable, Iterable, Tuple
import math
import torch
from torch.optim import Optimizer
class AdamW(Optimizer):
def __init__(
self,
params: Iterable[torch.nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
):
if lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter: {} - should be in [0.0, 1.0[".format(betas[1]))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(eps))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, correct_bias=correct_bias)
super().__init__(params, defaults)
def step(self, closure: Callable = None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")
# State should be stored in this dictionary
state = self.state[p]
# Access hyperparameters from the `group` dictionary
alpha = group["lr"]
# Complete the implementation of AdamW here, reading and saving
# your state in the `state` dictionary above.
# The hyperparameters can be read from the `group` dictionary
# (they are lr, betas, eps, weight_decay, as saved in the constructor).
#
# 1- Update first and second moments of the gradients
# 2- Apply bias correction
# (using the "efficient version" given in https://arxiv.org/abs/1412.6980;
# also given in the pseudo-code in the project description).
# 3- Update parameters (p.data).
# 4- After that main gradient-based update, update again using weight decay
# (incorporating the learning rate again).
### TODO
# From respondent: order of implementation above is different
# from Pytorch document of `AdamW`
betas = group["betas"]
if "m_t" not in state:
# initialization
state["m_t"] = 0
state["m_t"] = betas[0] * state["m_t"] + (1 - betas[0]) * grad
if "v_t" not in state:
# initialization
state["v_t"] = 0
state["v_t"] = betas[1] * state["v_t"] + (1 - betas[1]) * torch.pow(grad, 2)
if "t" not in state:
# initialization
state["t"] = 0
state["t"] = state["t"] + 1
p.data = p.data - alpha * group["weight_decay"] * p.data
if group["correct_bias"]:
alpha = alpha * (math.sqrt(1 - math.pow(betas[1], state["t"]))) \
/ (1 - math.pow(betas[0], state["t"]))
p.data = p.data - alpha * state["m_t"] / (torch.sqrt(state["v_t"]) + group["eps"])
return loss