forked from libigl/libigl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAABB.cpp
977 lines (936 loc) · 34.6 KB
/
AABB.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
// This file is part of libigl, a simple c++ geometry processing library.
//
// Copyright (C) 2013 Alec Jacobson <alecjacobson@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla Public License
// v. 2.0. If a copy of the MPL was not distributed with this file, You can
// obtain one at http://mozilla.org/MPL/2.0/.
#include "AABB.h"
#include "EPS.h"
#include "barycenter.h"
#include "barycentric_coordinates.h"
#include "colon.h"
#include "doublearea.h"
#include "point_simplex_squared_distance.h"
#include "project_to_line_segment.h"
#include "sort.h"
#include "volume.h"
#include "ray_box_intersect.h"
#include "ray_mesh_intersect.h"
#include <iostream>
#include <iomanip>
#include <limits>
#include <list>
#include <queue>
#include <stack>
template <typename DerivedV, int DIM>
template <typename Derivedbb_mins, typename Derivedbb_maxs>
IGL_INLINE void igl::AABB<DerivedV,DIM>::init(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
const Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
const Eigen::VectorXi & elements,
const int i)
{
using namespace std;
using namespace Eigen;
deinit();
if(bb_mins.size() > 0)
{
assert(bb_mins.rows() == bb_maxs.rows() && "Serial tree arrays must match");
assert(bb_mins.cols() == V.cols() && "Serial tree array dim must match V");
assert(bb_mins.cols() == bb_maxs.cols() && "Serial tree arrays must match");
assert(bb_mins.rows() == elements.rows() &&
"Serial tree arrays must match");
// construct from serialization
m_box.extend(bb_mins.row(i).transpose());
m_box.extend(bb_maxs.row(i).transpose());
m_primitive = elements(i);
// Not leaf then recurse
if(m_primitive == -1)
{
m_left = new AABB();
m_left->init( V,Ele,bb_mins,bb_maxs,elements,2*i+1);
m_right = new AABB();
m_right->init( V,Ele,bb_mins,bb_maxs,elements,2*i+2);
//m_depth = std::max( m_left->m_depth, m_right->m_depth)+1;
}
}else
{
VectorXi allI = colon<int>(0,Ele.rows()-1);
MatrixXDIMS BC;
if(Ele.cols() == 1)
{
// points
BC = V;
}else
{
// Simplices
barycenter(V,Ele,BC);
}
MatrixXi SI(BC.rows(),BC.cols());
{
MatrixXDIMS _;
MatrixXi IS;
igl::sort(BC,1,true,_,IS);
// Need SI(i) to tell which place i would be sorted into
const int dim = IS.cols();
for(int i = 0;i<IS.rows();i++)
{
for(int d = 0;d<dim;d++)
{
SI(IS(i,d),d) = i;
}
}
}
init(V,Ele,SI,allI);
}
}
template <typename DerivedV, int DIM>
void igl::AABB<DerivedV,DIM>::init(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele)
{
using namespace Eigen;
// deinit will be immediately called...
return init(V,Ele,MatrixXDIMS(),MatrixXDIMS(),VectorXi(),0);
}
template <typename DerivedV, int DIM>
IGL_INLINE void igl::AABB<DerivedV,DIM>::init(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const Eigen::MatrixXi & SI,
const Eigen::VectorXi & I)
{
using namespace Eigen;
using namespace std;
deinit();
if(V.size() == 0 || Ele.size() == 0 || I.size() == 0)
{
return;
}
assert(DIM == V.cols() && "V.cols() should matched declared dimension");
//const Scalar inf = numeric_limits<Scalar>::infinity();
m_box = AlignedBox<Scalar,DIM>();
// Compute bounding box
for(int i = 0;i<I.rows();i++)
{
for(int c = 0;c<Ele.cols();c++)
{
m_box.extend(V.row(Ele(I(i),c)).transpose());
m_box.extend(V.row(Ele(I(i),c)).transpose());
}
}
switch(I.size())
{
case 0:
{
assert(false);
}
case 1:
{
m_primitive = I(0);
break;
}
default:
{
// Compute longest direction
int max_d = -1;
m_box.diagonal().maxCoeff(&max_d);
// Can't use median on BC directly because many may have same value,
// but can use median on sorted BC indices
VectorXi SIdI(I.rows());
for(int i = 0;i<I.rows();i++)
{
SIdI(i) = SI(I(i),max_d);
}
// Since later I use <= I think I don't need to worry about odd/even
// Pass by copy to avoid changing input
const auto median = [](VectorXi A)->Scalar
{
size_t n = A.size()/2;
nth_element(A.data(),A.data()+n,A.data()+A.size());
if(A.rows() % 2 == 1)
{
return A(n);
}else
{
nth_element(A.data(),A.data()+n-1,A.data()+A.size());
return 0.5*(A(n)+A(n-1));
}
};
const Scalar med = median(SIdI);
VectorXi LI((I.rows()+1)/2),RI(I.rows()/2);
assert(LI.rows()+RI.rows() == I.rows());
// Distribute left and right
{
int li = 0;
int ri = 0;
for(int i = 0;i<I.rows();i++)
{
if(SIdI(i)<=med)
{
LI(li++) = I(i);
}else
{
RI(ri++) = I(i);
}
}
}
//m_depth = 0;
if(LI.rows()>0)
{
m_left = new AABB();
m_left->init(V,Ele,SI,LI);
//m_depth = std::max(m_depth, m_left->m_depth+1);
}
if(RI.rows()>0)
{
m_right = new AABB();
m_right->init(V,Ele,SI,RI);
//m_depth = std::max(m_depth, m_right->m_depth+1);
}
}
}
}
template <typename DerivedV, int DIM>
IGL_INLINE bool igl::AABB<DerivedV,DIM>::is_leaf() const
{
return m_primitive != -1;
}
template <typename DerivedV, int DIM>
template <typename Derivedq>
IGL_INLINE std::vector<int> igl::AABB<DerivedV,DIM>::find(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const Eigen::PlainObjectBase<Derivedq> & q,
const bool first) const
{
using namespace std;
using namespace Eigen;
assert(q.size() == DIM &&
"Query dimension should match aabb dimension");
assert(Ele.cols() == V.cols()+1 &&
"AABB::find only makes sense for (d+1)-simplices");
const Scalar epsilon = igl::EPS<Scalar>();
// Check if outside bounding box
bool inside = m_box.contains(q.transpose());
if(!inside)
{
return std::vector<int>();
}
assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
if(is_leaf())
{
// Initialize to some value > -epsilon
Scalar a1=0,a2=0,a3=0,a4=0;
switch(DIM)
{
case 3:
{
// Barycentric coordinates
typedef Eigen::Matrix<Scalar,1,3> RowVector3S;
const RowVector3S V1 = V.row(Ele(m_primitive,0));
const RowVector3S V2 = V.row(Ele(m_primitive,1));
const RowVector3S V3 = V.row(Ele(m_primitive,2));
const RowVector3S V4 = V.row(Ele(m_primitive,3));
a1 = volume_single(V2,V4,V3,(RowVector3S)q);
a2 = volume_single(V1,V3,V4,(RowVector3S)q);
a3 = volume_single(V1,V4,V2,(RowVector3S)q);
a4 = volume_single(V1,V2,V3,(RowVector3S)q);
break;
}
case 2:
{
// Barycentric coordinates
typedef Eigen::Matrix<Scalar,2,1> Vector2S;
const Vector2S V1 = V.row(Ele(m_primitive,0));
const Vector2S V2 = V.row(Ele(m_primitive,1));
const Vector2S V3 = V.row(Ele(m_primitive,2));
// Hack for now to keep templates simple. If becomes bottleneck
// consider using std::enable_if_t
const Vector2S q2 = q.head(2);
a1 = doublearea_single(V1,V2,q2);
a2 = doublearea_single(V2,V3,q2);
a3 = doublearea_single(V3,V1,q2);
break;
}
default:assert(false);
}
// Normalization is important for correcting sign
Scalar sum = a1+a2+a3+a4;
a1 /= sum;
a2 /= sum;
a3 /= sum;
a4 /= sum;
if(
a1>=-epsilon &&
a2>=-epsilon &&
a3>=-epsilon &&
a4>=-epsilon)
{
return std::vector<int>(1,m_primitive);
}else
{
return std::vector<int>();
}
}
std::vector<int> left = m_left->find(V,Ele,q,first);
if(first && !left.empty())
{
return left;
}
std::vector<int> right = m_right->find(V,Ele,q,first);
if(first)
{
return right;
}
left.insert(left.end(),right.begin(),right.end());
return left;
}
template <typename DerivedV, int DIM>
IGL_INLINE int igl::AABB<DerivedV,DIM>::subtree_size() const
{
// 1 for self
int n = 1;
int n_left = 0,n_right = 0;
if(m_left != NULL)
{
n_left = m_left->subtree_size();
}
if(m_right != NULL)
{
n_right = m_right->subtree_size();
}
n += 2*std::max(n_left,n_right);
return n;
}
template <typename DerivedV, int DIM>
template <typename Derivedbb_mins, typename Derivedbb_maxs>
IGL_INLINE void igl::AABB<DerivedV,DIM>::serialize(
Eigen::PlainObjectBase<Derivedbb_mins> & bb_mins,
Eigen::PlainObjectBase<Derivedbb_maxs> & bb_maxs,
Eigen::VectorXi & elements,
const int i) const
{
using namespace std;
using namespace Eigen;
// Calling for root then resize output
if(i==0)
{
const int m = subtree_size();
//cout<<"m: "<<m<<endl;
bb_mins.resize(m,DIM);
bb_maxs.resize(m,DIM);
elements.resize(m,1);
}
//cout<<i<<" ";
bb_mins.row(i) = m_box.min();
bb_maxs.row(i) = m_box.max();
elements(i) = m_primitive;
if(m_left != NULL)
{
m_left->serialize(bb_mins,bb_maxs,elements,2*i+1);
}
if(m_right != NULL)
{
m_right->serialize(bb_mins,bb_maxs,elements,2*i+2);
}
}
template <typename DerivedV, int DIM>
IGL_INLINE typename igl::AABB<DerivedV,DIM>::Scalar
igl::AABB<DerivedV,DIM>::squared_distance(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const RowVectorDIMS & p,
int & i,
RowVectorDIMS & c) const
{
return squared_distance(V,Ele,p,std::numeric_limits<Scalar>::infinity(),i,c);
}
template <typename DerivedV, int DIM>
IGL_INLINE typename igl::AABB<DerivedV,DIM>::Scalar
igl::AABB<DerivedV,DIM>::squared_distance(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const RowVectorDIMS & p,
Scalar min_sqr_d,
int & i,
RowVectorDIMS & c) const
{
using namespace Eigen;
using namespace std;
Scalar sqr_d = min_sqr_d;
//assert(DIM == 3 && "Code has only been tested for DIM == 3");
assert((Ele.cols() == 3 || Ele.cols() == 2 || Ele.cols() == 1)
&& "Code has only been tested for simplex sizes 3,2,1");
assert(m_primitive==-1 || (m_left == NULL && m_right == NULL));
if(is_leaf())
{
leaf_squared_distance(V,Ele,p,sqr_d,i,c);
}else
{
bool looked_left = false;
bool looked_right = false;
const auto & look_left = [&]()
{
int i_left;
RowVectorDIMS c_left = c;
Scalar sqr_d_left = m_left->squared_distance(V,Ele,p,sqr_d,i_left,c_left);
this->set_min(p,sqr_d_left,i_left,c_left,sqr_d,i,c);
looked_left = true;
};
const auto & look_right = [&]()
{
int i_right;
RowVectorDIMS c_right = c;
Scalar sqr_d_right =
m_right->squared_distance(V,Ele,p,sqr_d,i_right,c_right);
this->set_min(p,sqr_d_right,i_right,c_right,sqr_d,i,c);
looked_right = true;
};
// must look left or right if in box
if(m_left->m_box.contains(p.transpose()))
{
look_left();
}
if(m_right->m_box.contains(p.transpose()))
{
look_right();
}
// if haven't looked left and could be less than current min, then look
Scalar left_min_sqr_d =
m_left->m_box.squaredExteriorDistance(p.transpose());
Scalar right_min_sqr_d =
m_right->m_box.squaredExteriorDistance(p.transpose());
if(left_min_sqr_d < right_min_sqr_d)
{
if(!looked_left && left_min_sqr_d<sqr_d)
{
look_left();
}
if( !looked_right && right_min_sqr_d<sqr_d)
{
look_right();
}
}else
{
if( !looked_right && right_min_sqr_d<sqr_d)
{
look_right();
}
if(!looked_left && left_min_sqr_d<sqr_d)
{
look_left();
}
}
}
return sqr_d;
}
template <typename DerivedV, int DIM>
template <
typename DerivedP,
typename DerivedsqrD,
typename DerivedI,
typename DerivedC>
IGL_INLINE void igl::AABB<DerivedV,DIM>::squared_distance(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const Eigen::PlainObjectBase<DerivedP> & P,
Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
Eigen::PlainObjectBase<DerivedI> & I,
Eigen::PlainObjectBase<DerivedC> & C) const
{
assert(P.cols() == V.cols() && "cols in P should match dim of cols in V");
sqrD.resize(P.rows(),1);
I.resize(P.rows(),1);
C.resizeLike(P);
// O( #P * log #Ele ), where log #Ele is really the depth of this AABB
// hierarchy
for(int p = 0;p<P.rows();p++)
{
RowVectorDIMS Pp = P.row(p), c;
int Ip;
sqrD(p) = squared_distance(V,Ele,Pp,Ip,c);
I(p) = Ip;
C.row(p).head(DIM) = c;
}
}
template <typename DerivedV, int DIM>
template <
typename Derivedother_V,
typename DerivedsqrD,
typename DerivedI,
typename DerivedC>
IGL_INLINE void igl::AABB<DerivedV,DIM>::squared_distance(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const AABB<Derivedother_V,DIM> & other,
const Eigen::PlainObjectBase<Derivedother_V> & other_V,
const Eigen::MatrixXi & other_Ele,
Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
Eigen::PlainObjectBase<DerivedI> & I,
Eigen::PlainObjectBase<DerivedC> & C) const
{
assert(other_Ele.cols() == 1 &&
"Only implemented for other as list of points");
assert(other_V.cols() == V.cols() && "other must match this dimension");
sqrD.setConstant(other_Ele.rows(),1,std::numeric_limits<double>::infinity());
I.resize(other_Ele.rows(),1);
C.resize(other_Ele.rows(),other_V.cols());
// All points in other_V currently think they need to check against root of
// this. The point of using another AABB is to quickly prune chunks of
// other_V so that most points just check some subtree of this.
// This holds a conservative estimate of max(sqr_D) where sqr_D is the
// current best minimum squared distance for all points in this subtree
double min_sqr_d = std::numeric_limits<double>::infinity();
squared_distance_helper(
V,Ele,&other,other_V,other_Ele,min_sqr_d,sqrD,I,C);
}
template <typename DerivedV, int DIM>
template <
typename Derivedother_V,
typename DerivedsqrD,
typename DerivedI,
typename DerivedC>
IGL_INLINE typename igl::AABB<DerivedV,DIM>::Scalar
igl::AABB<DerivedV,DIM>::squared_distance_helper(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const AABB<Derivedother_V,DIM> * other,
const Eigen::PlainObjectBase<Derivedother_V> & other_V,
const Eigen::MatrixXi & other_Ele,
const Scalar /*min_sqr_d*/,
Eigen::PlainObjectBase<DerivedsqrD> & sqrD,
Eigen::PlainObjectBase<DerivedI> & I,
Eigen::PlainObjectBase<DerivedC> & C) const
{
using namespace std;
using namespace Eigen;
// This implementation is a bit disappointing. There's no major speed up. Any
// performance gains seem to come from accidental cache coherency and
// diminish for larger "other" (the opposite of what was intended).
// Base case
if(other->is_leaf() && this->is_leaf())
{
Scalar sqr_d = sqrD(other->m_primitive);
int i = I(other->m_primitive);
RowVectorDIMS c = C.row( other->m_primitive);
RowVectorDIMS p = other_V.row(other->m_primitive);
leaf_squared_distance(V,Ele,p,sqr_d,i,c);
sqrD( other->m_primitive) = sqr_d;
I( other->m_primitive) = i;
C.row(other->m_primitive) = c;
//cout<<"leaf: "<<sqr_d<<endl;
//other->m_max_sqr_d = sqr_d;
return sqr_d;
}
if(other->is_leaf())
{
Scalar sqr_d = sqrD(other->m_primitive);
int i = I(other->m_primitive);
RowVectorDIMS c = C.row( other->m_primitive);
RowVectorDIMS p = other_V.row(other->m_primitive);
sqr_d = squared_distance(V,Ele,p,sqr_d,i,c);
sqrD( other->m_primitive) = sqr_d;
I( other->m_primitive) = i;
C.row(other->m_primitive) = c;
//other->m_max_sqr_d = sqr_d;
return sqr_d;
}
//// Exact minimum squared distance between arbitary primitives inside this and
//// othre's bounding boxes
//const auto & min_squared_distance = [&](
// const AABB<DerivedV,DIM> * A,
// const AABB<Derivedother_V,DIM> * B)->Scalar
//{
// return A->m_box.squaredExteriorDistance(B->m_box);
//};
if(this->is_leaf())
{
//if(min_squared_distance(this,other) < other->m_max_sqr_d)
if(true)
{
this->squared_distance_helper(
V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
this->squared_distance_helper(
V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
}else
{
// This is never reached...
}
//// we know other is not a leaf
//other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
return 0;
}
// FORCE DOWN TO OTHER LEAF EVAL
//if(min_squared_distance(this,other) < other->m_max_sqr_d)
if(true)
{
if(true)
{
this->squared_distance_helper(
V,Ele,other->m_left,other_V,other_Ele,0,sqrD,I,C);
this->squared_distance_helper(
V,Ele,other->m_right,other_V,other_Ele,0,sqrD,I,C);
}else // this direction never seems to be faster
{
this->m_left->squared_distance_helper(
V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
this->m_right->squared_distance_helper(
V,Ele,other,other_V,other_Ele,0,sqrD,I,C);
}
}else
{
// this is never reached ... :-(
}
//// we know other is not a leaf
//other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
return 0;
#if 0 // False
// _Very_ conservative approximation of maximum squared distance between
// primitives inside this and other's bounding boxes
const auto & max_squared_distance = [](
const AABB<DerivedV,DIM> * A,
const AABB<Derivedother_V,DIM> * B)->Scalar
{
AlignedBox<Scalar,DIM> combo = A->m_box;
combo.extend(B->m_box);
return combo.diagonal().squaredNorm();
};
//// other base-case
//if(other->is_leaf())
//{
// double sqr_d = sqrD(other->m_primitive);
// int i = I(other->m_primitive);
// RowVectorDIMS c = C.row(m_primitive);
// RowVectorDIMS p = other_V.row(m_primitive);
// leaf_squared_distance(V,Ele,p,sqr_d,i,c);
// sqrD(other->m_primitive) = sqr_d;
// I(other->m_primitive) = i;
// C.row(m_primitive) = c;
// return;
//}
std::vector<const AABB<DerivedV,DIM> * > this_list;
if(this->is_leaf())
{
this_list.push_back(this);
}else
{
assert(this->m_left);
this_list.push_back(this->m_left);
assert(this->m_right);
this_list.push_back(this->m_right);
}
std::vector<AABB<Derivedother_V,DIM> *> other_list;
if(other->is_leaf())
{
other_list.push_back(other);
}else
{
assert(other->m_left);
other_list.push_back(other->m_left);
assert(other->m_right);
other_list.push_back(other->m_right);
}
//const std::function<Scalar(
// const AABB<Derivedother_V,DIM> * other)
// > max_sqr_d = [&sqrD,&max_sqr_d](const AABB<Derivedother_V,DIM> * other)->Scalar
// {
// if(other->is_leaf())
// {
// return sqrD(other->m_primitive);
// }else
// {
// return std::max(max_sqr_d(other->m_left),max_sqr_d(other->m_right));
// }
// };
//// Potentially recurse on all pairs, if minimum distance is less than running
//// bound
//Eigen::Matrix<Scalar,Eigen::Dynamic,1> other_max_sqr_d =
// Eigen::Matrix<Scalar,Eigen::Dynamic,1>::Constant(other_list.size(),1,min_sqr_d);
for(size_t child = 0;child<other_list.size();child++)
{
auto other_tree = other_list[child];
Eigen::Matrix<Scalar,Eigen::Dynamic,1> this_max_sqr_d(this_list.size(),1);
for(size_t t = 0;t<this_list.size();t++)
{
const auto this_tree = this_list[t];
this_max_sqr_d(t) = max_squared_distance(this_tree,other_tree);
}
if(this_list.size() ==2 &&
( this_max_sqr_d(0) > this_max_sqr_d(1))
)
{
std::swap(this_list[0],this_list[1]);
//std::swap(this_max_sqr_d(0),this_max_sqr_d(1));
}
const Scalar sqr_d = this_max_sqr_d.minCoeff();
for(size_t t = 0;t<this_list.size();t++)
{
const auto this_tree = this_list[t];
//const auto mm = max_sqr_d(other_tree);
//const Scalar mc = other_max_sqr_d(child);
//assert(mc == mm);
// Only look left/right in this_list if can possible decrease somebody's
// distance in this_tree.
const Scalar min_this_other = min_squared_distance(this_tree,other_tree);
if(
min_this_other < sqr_d &&
min_this_other < other_tree->m_max_sqr_d)
{
//cout<<"before: "<<other_max_sqr_d(child)<<endl;
//other_max_sqr_d(child) = std::min(
// other_max_sqr_d(child),
// this_tree->squared_distance_helper(
// V,Ele,other_tree,other_V,other_Ele,other_max_sqr_d(child),sqrD,I,C));
//cout<<"after: "<<other_max_sqr_d(child)<<endl;
this_tree->squared_distance_helper(
V,Ele,other_tree,other_V,other_Ele,0,sqrD,I,C);
}
}
}
//const Scalar ret = other_max_sqr_d.maxCoeff();
//const auto mm = max_sqr_d(other);
//assert(mm == ret);
//cout<<"non-leaf: "<<ret<<endl;
//return ret;
if(!other->is_leaf())
{
other->m_max_sqr_d = std::max(other->m_left->m_max_sqr_d,other->m_right->m_max_sqr_d);
}
return 0;
#endif
}
template <typename DerivedV, int DIM>
IGL_INLINE void igl::AABB<DerivedV,DIM>::leaf_squared_distance(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const RowVectorDIMS & p,
Scalar & sqr_d,
int & i,
RowVectorDIMS & c) const
{
using namespace Eigen;
using namespace std;
RowVectorDIMS c_candidate;
Scalar sqr_d_candidate;
igl::point_simplex_squared_distance<DIM>(
p,V,Ele,m_primitive,sqr_d_candidate,c_candidate);
set_min(p,sqr_d_candidate,m_primitive,c_candidate,sqr_d,i,c);
}
template <typename DerivedV, int DIM>
IGL_INLINE void igl::AABB<DerivedV,DIM>::set_min(
const RowVectorDIMS &
#ifndef NDEBUG
p
#endif
,
const Scalar sqr_d_candidate,
const int i_candidate,
const RowVectorDIMS & c_candidate,
Scalar & sqr_d,
int & i,
RowVectorDIMS & c) const
{
#ifndef NDEBUG
//std::cout<<matlab_format(c_candidate,"c_candidate")<<std::endl;
const Scalar pc_norm = (p-c_candidate).squaredNorm();
const Scalar diff = fabs(sqr_d_candidate - pc_norm);
assert(diff<=1e-10 && "distance should match norm of difference");
#endif
if(sqr_d_candidate < sqr_d)
{
i = i_candidate;
c = c_candidate;
sqr_d = sqr_d_candidate;
}
}
template <typename DerivedV, int DIM>
IGL_INLINE bool
igl::AABB<DerivedV,DIM>::intersect_ray(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const RowVectorDIMS & origin,
const RowVectorDIMS & dir,
std::vector<igl::Hit> & hits) const
{
hits.clear();
const Scalar t0 = 0;
const Scalar t1 = std::numeric_limits<Scalar>::infinity();
{
Scalar _1,_2;
if(!ray_box_intersect(origin,dir,m_box,t0,t1,_1,_2))
{
return false;
}
}
if(this->is_leaf())
{
// Actually process elements
assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
// Cheesecake way of hitting element
bool ret = ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hits);
// Since we only gave ray_mesh_intersect a single face, it will have set
// any hits to id=0. Set these to this primitive's id
for(auto & hit : hits)
{
hit.id = m_primitive;
}
return ret;
}
std::vector<igl::Hit> left_hits;
std::vector<igl::Hit> right_hits;
const bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,left_hits);
const bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,right_hits);
hits.insert(hits.end(),left_hits.begin(),left_hits.end());
hits.insert(hits.end(),right_hits.begin(),right_hits.end());
return left_ret || right_ret;
}
template <typename DerivedV, int DIM>
IGL_INLINE bool
igl::AABB<DerivedV,DIM>::intersect_ray(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const RowVectorDIMS & origin,
const RowVectorDIMS & dir,
igl::Hit & hit) const
{
#if false
// BFS
std::queue<const AABB *> Q;
// Or DFS
//std::stack<const AABB *> Q;
Q.push(this);
bool any_hit = false;
hit.t = std::numeric_limits<Scalar>::infinity();
while(!Q.empty())
{
const AABB * tree = Q.front();
//const AABB * tree = Q.top();
Q.pop();
{
Scalar _1,_2;
if(!ray_box_intersect(
origin,dir,tree->m_box,Scalar(0),Scalar(hit.t),_1,_2))
{
continue;
}
}
if(tree->is_leaf())
{
// Actually process elements
assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
igl::Hit leaf_hit;
if(
ray_mesh_intersect(origin,dir,V,Ele.row(tree->m_primitive),leaf_hit)&&
leaf_hit.t < hit.t)
{
// correct the id
leaf_hit.id = tree->m_primitive;
hit = leaf_hit;
}
continue;
}
// Add children to queue
Q.push(tree->m_left);
Q.push(tree->m_right);
}
return any_hit;
#else
// DFS
return intersect_ray(
V,Ele,origin,dir,std::numeric_limits<Scalar>::infinity(),hit);
#endif
}
template <typename DerivedV, int DIM>
IGL_INLINE bool
igl::AABB<DerivedV,DIM>::intersect_ray(
const Eigen::PlainObjectBase<DerivedV> & V,
const Eigen::MatrixXi & Ele,
const RowVectorDIMS & origin,
const RowVectorDIMS & dir,
const Scalar _min_t,
igl::Hit & hit) const
{
//// Naive, slow
//std::vector<igl::Hit> hits;
//intersect_ray(V,Ele,origin,dir,hits);
//if(hits.size() > 0)
//{
// hit = hits.front();
// return true;
//}else
//{
// return false;
//}
Scalar min_t = _min_t;
const Scalar t0 = 0;
{
Scalar _1,_2;
if(!ray_box_intersect(origin,dir,m_box,t0,min_t,_1,_2))
{
return false;
}
}
if(this->is_leaf())
{
// Actually process elements
assert((Ele.size() == 0 || Ele.cols() == 3) && "Elements should be triangles");
// Cheesecake way of hitting element
bool ret = ray_mesh_intersect(origin,dir,V,Ele.row(m_primitive),hit);
hit.id = m_primitive;
return ret;
}
// Doesn't seem like smartly choosing left before/after right makes a
// differnce
igl::Hit left_hit;
igl::Hit right_hit;
bool left_ret = m_left->intersect_ray(V,Ele,origin,dir,min_t,left_hit);
if(left_ret && left_hit.t<min_t)
{
// It's scary that this line doesn't seem to matter....
min_t = left_hit.t;
hit = left_hit;
left_ret = true;
}else
{
left_ret = false;
}
bool right_ret = m_right->intersect_ray(V,Ele,origin,dir,min_t,right_hit);
if(right_ret && right_hit.t<min_t)
{
min_t = right_hit.t;
hit = right_hit;
right_ret = true;
}else
{
right_ret = false;
}
return left_ret || right_ret;
}
#ifdef IGL_STATIC_LIBRARY
// Explicit template instantiation
// generated by autoexplicit.sh
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&) const;
// generated by autoexplicit.sh
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<long, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<long, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&) const;
// generated by autoexplicit.sh
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<long, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, 3, 0, -1, 3> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<long, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 3, 0, -1, 3> >&) const;
// generated by autoexplicit.sh
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::init(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&);
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<int, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 3, 1, 1, 3> const&, int&, Eigen::Matrix<double, 1, 3, 1, 1, 3>&) const;
template double igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::Matrix<double, 1, 2, 1, 1, 2> const&, int&, Eigen::Matrix<double, 1, 2, 1, 1, 2>&) const;
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::squared_distance<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, 1, 0, -1, 1>, Eigen::Matrix<int, -1, 1, 0, -1, 1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<int, -1, 1, 0, -1, 1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&) const;
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::init<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, int);
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::init<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, 1, 0, -1, 1> const&, int);
template std::vector<int, std::allocator<int> > igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::find<Eigen::Matrix<double, 1, -1, 1, 1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, 1, -1, 1, 1, -1> > const&, bool) const;
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 2>::serialize<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::Matrix<int, -1, 1, 0, -1, 1>&, int) const;
template std::vector<int, std::allocator<int> > igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::find<Eigen::Matrix<double, 1, -1, 1, 1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> > const&, Eigen::Matrix<int, -1, -1, 0, -1, -1> const&, Eigen::PlainObjectBase<Eigen::Matrix<double, 1, -1, 1, 1, -1> > const&, bool) const;
template void igl::AABB<Eigen::Matrix<double, -1, -1, 0, -1, -1>, 3>::serialize<Eigen::Matrix<double, -1, -1, 0, -1, -1>, Eigen::Matrix<double, -1, -1, 0, -1, -1> >(Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::PlainObjectBase<Eigen::Matrix<double, -1, -1, 0, -1, -1> >&, Eigen::Matrix<int, -1, 1, 0, -1, 1>&, int) const;
#endif