-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
258 lines (231 loc) · 7.37 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse
import torch
from pylab import *
from sklearn import metrics
from model import PU_DEEP
from utils import CustomLoader, get_dataset, get_extended_keyword
def restricted_float(x):
x = float(x)
if x < 0.0 or x > 1.0:
raise argparse.ArgumentTypeError("%r not in range [0.0, 1.0]" % (x,))
return x
parser = argparse.ArgumentParser(
description="Text classification based on keyword pseudo-algorithm"
)
parser.add_argument(
"--dataset",
type=str,
choices=["subj", "custrev", "mpqa", "ayi", "20_newsgroups"],
default="mpqa",
)
parser.add_argument(
"--keywords",
type=str,
nargs="*",
default=None,
help="keywords for pesudo-labeling. If input is blank, it will be default values which we set already",
)
parser.add_argument(
"--mode",
type=str,
choices=["clean", "pseudo"],
default="pseudo",
help="use corrupted pseudo-labels or use clean labels",
)
parser.add_argument(
"--weight", type=int, default=3, help="weight for original keywords"
)
parser.add_argument(
"--extension",
type=int,
default=5,
help="the number of extended keywords which are similar to original one",
)
parser.add_argument(
"--threshold",
type=restricted_float,
default=0.9,
help="threshold value for pseudo-labeled positive data. If you want to use all value set it as 1.0",
)
parser.add_argument(
"--method",
type=str,
choices=["sigmoid", "log", "nb", "randomforest", "knn", " gloverank"],
default="sigmoid",
help="sigmoid is a symmetric loss, log (logistic) is a non-symmetric loss, and baselines (nb, knn, randomforest, gloverank)",
)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_threshold(score, ratio=0.1):
n = int(len(score) * ratio)
sc = sorted(score, reverse=True)
return sc[n]
def precision_at_k(y_true, y_score, k=10):
y_true = np.array(y_true)
y_score = np.array(y_score)
unique_y = np.unique(y_true)
if len(unique_y) > 2:
raise ValueError("Only support two relevance levels.")
pos_label = unique_y[1]
order = np.argsort(y_score)[::-1]
y_true = np.take(y_true, order[:k])
n_relevant = len(y_true[y_true == pos_label])
return float(n_relevant) / min(k, len(y_true))
if __name__ == "__main__":
np.random.seed(1)
######## Parameters ########
embedding_dim = 50
batch_size = 128
hidden_size = 64
num_layers = 2
epoch = 50
if args.dataset in ["ayi", "custrev"]:
# use big learning rate for small dataset
lr = 1e-4
else:
lr = 1e-5
#############################
proposed_list = ["sigmoid", "log"]
print("Dataset: %s" % args.dataset)
if args.keywords is None:
if args.dataset == "20_newsgroups":
keywords = ["sports", "baseball", "hockey"]
elif args.dataset == "subj":
keywords = [
"wonderful",
"terrible",
"feel",
"happy",
"ugly",
"even",
"horrible",
"interesting",
"funny",
"dramatic",
"romantic",
"compassionate",
]
elif args.dataset == "ayi":
keywords = [
"great",
"best",
"excellent",
"friendly",
"awesome",
"nice",
"amazing",
]
elif args.dataset == "mpqa":
keywords = ["support", "hope", "help", "good", "great", "love"]
elif args.dataset == "custrev":
keywords = [
"easy",
"excellent",
"nice",
"great",
"good",
"love",
"amazing",
"best",
"awesome",
"perfect",
"definitely",
"better",
"happy",
]
else:
keywords = args.keywords
pseudo = args.mode == "pseudo"
flip = args.dataset == "subj"
keywords = get_extended_keyword(
keywords, vocab=None, weight=args.weight, n=args.extension
)
if pseudo:
if args.extension > 0:
print("Extended Keywords :", keywords)
else:
print("Original Keywords :", keywords)
else:
print("ORACLE MODE")
x_train, x_test, y_test, lp, ln, sc = get_dataset(
args.dataset, key=keywords, threshold=args.threshold, pseudo=pseudo, flip=flip
)
# check pseudo-labeling method
tp = len(np.where(lp == 1)[0])
fp = len(np.where(lp == -1)[0])
tn = len(np.where(ln == -1)[0])
fn = len(np.where(ln == 1)[0])
print("--------------------------------------------")
print("Result of Pseudo-labeling Algorithm 1")
print("Pseudo-positive (true-p, false-p) = (%d, %d)" % (tp, fp))
print("Pseudo-negative (false-n, true-n) = (%d, %d)" % (fn, tn))
print("--------------------------------------------")
pi = float(tp / len(lp))
pi_p = float(fn / len(ln))
print(
"Ratio of true positive data in pseudo-labeled data (pi, pi_prime) = (%.2f, %.2f)"
% (pi, pi_p)
)
true_pos = len(np.where(lp == 1)[0]) + len(np.where(ln == 1)[0])
true_neg = len(np.where(lp == -1)[0]) + len(np.where(ln == -1)[0])
y_train = np.concatenate((np.ones(len(lp)), -np.ones(len(ln))))
n_train = len(y_train)
data = np.concatenate((x_train, x_test))
label = np.concatenate((y_train, y_test))
TEXT, vocab_dim, word_embeddings, train_loader, test_loader = CustomLoader(
doc=data,
lbl=label,
n_tr=n_train,
batch_size=batch_size,
device=device,
embeds=embedding_dim,
)
if args.method in proposed_list:
score_test, y_test, score_train, y_train = PU_DEEP(
train_loader,
test_loader,
vocab_dim=vocab_dim,
weights=word_embeddings,
embedding_dim=embedding_dim,
num_layers=num_layers,
epoch=epoch,
stepsize=lr,
hidden_size=hidden_size,
device=device,
loss=args.method,
)
else:
from baselines import get_baseline_method
score_test, y_test, score_train, y_train = get_baseline_method(
x_train, y_train, x_test, y_test, method=args.method, keywords=keywords
)
threshold = get_threshold(score_train, float(true_pos / (true_pos + true_neg)))
# if the value is exactly zero, we take it as positive.
prediction = np.where(
np.sign(score_test - threshold) == 0, 1, np.sign(score_test - threshold)
)
score = 100 * metrics.roc_auc_score(y_test, score_test)
precn = 100 * precision_at_k(y_test, score_test, k=100)
f1 = 100 * metrics.f1_score(y_test, prediction, pos_label=1, average="macro")
acc = 100 * metrics.accuracy_score(y_test, prediction)
# for memory
del (
x_train,
x_test,
y_test,
lp,
ln,
sc,
data,
label,
TEXT,
vocab_dim,
word_embeddings,
train_loader,
test_loader,
)
print("RESULT for %s - %s loss " % (args.dataset, args.method))
print("AUC score : %2.1f" % score)
print("F1 measure: %2.1f" % f1)
print("Accuracy : %2.1f" % acc)
print("Prec@100 : %2.1f" % precn)