Skip to content

Commit fde95ed

Browse files
committed
updates
1 parent 5198d94 commit fde95ed

File tree

3 files changed

+49
-54
lines changed

3 files changed

+49
-54
lines changed

MLlearningresources.md

Lines changed: 31 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -21,132 +21,139 @@ notebook, but most tutorials offer notebooks ready to use directly.
2121

2222
- A Course in Machine Learning, <http://ciml.info/>
2323

24-
|
24+
+++
2525

2626
- AutoML: Methods, Systems, Challenges,
2727
<https://www.ml4aad.org/wp-content/uploads/2019/05/AutoML_Book.pdf>
2828

29-
|
29+
+++
3030

3131
- Building Safe A.I., A Tutorial for Encrypted Deep Learning,
3232
<https://iamtrask.github.io/2017/03/17/safe-ai/>
3333

34-
|
34+
+++
3535

3636
- Collection of Interactive Machine Learning Examples,
3737
<https://aihub.cloud.google.com/s?category=notebook>
3838

39-
|
39+
+++
4040

4141
- Cryptography and Machine Learning, Mixing both for
4242
privacy-preserving machine learning, <https://mortendahl.github.io/>
4343

44-
|
44+
+++
4545

4646
- Dive into Deep Learning, An interactive deep learning book with
4747
code, math, and discussions, <https://d2l.ai/>
4848

49-
|
49+
+++
5050

5151
- Explainable Deep Learning: A Field Guide for the Uninitiated. Great
5252
learning guide for new and starting researchers in the Deep neural
5353
network (DNN) field. <https://arxiv.org/pdf/2004.14545.pdf>
5454

55-
|
55+
+++
56+
- Fairness and machine learning, Limitations and Opportunities by Solon Barocas, Moritz Hardt, Arvind Narayanan, https://fairmlbook.org/index.html
57+
58+
+++
5659

5760
- Foundations of Machine Learning, Understand the Concepts, Techniques
5861
and Mathematical Frameworks Used by Experts in Machine Learning,
5962
<https://bloomberg.github.io/foml/#home>
6063

61-
|
64+
+++
6265

6366
- Interpretable Machine Learning, A Guide for Making Black Box Models
6467
Explainable,Christoph Molnar,
6568
<https://christophm.github.io/interpretable-ml-book/>
6669

67-
|
70+
+++
6871

6972
- Machine Learning Crash Course with TensorFlow APIs,
7073
<https://developers.google.com/machine-learning/crash-course/> This
7174
is a great course published by Google\'s. It is advertised as a \'A
7275
self-study guide for aspiring machine learning practitioners\'
7376

74-
|
77+
+++
7578

7679
- Machine Learning Guides, Simple step-by-step walkthroughs to solve
7780
common machine learning problems using best practices ,
7881
<https://developers.google.com/machine-learning/guides/>
7982

80-
|
83+
+++
8184

8285
- Machines that Learn in the Wild - Machine learning capabilities,
8386
limitations and implications,
8487
<https://media.nesta.org.uk/documents/machines_that_learn_in_the_wild.pdf>
8588

86-
|
89+
+++
8790

8891
- Mathematics for Machine Learning, <https://mml-book.github.io/>
8992
Examples and tutorials for this book are placed on:
9093
<https://github.com/mml-book/mml-book.github.io>
9194

92-
|
95+
+++
9396

9497
- Mathematics for Machine Learning, Garrett Thomas. Introductory class
9598
in machine learning from UC Berkeley(course CS 189/289A). See
9699
<https://gwthomas.github.io/docs/math4ml.pdf>
97100

98-
|
101+
102+
+++
99103

100104
- Practical Deep Learning for Coders v3,
101105
<https://course.fast.ai/index.html>
102106

103-
|
107+
+++
104108

105109
- Python Machine Learning course,
106110
<https://machine-learning-course.readthedocs.io/en/latest/index.html>
107111

108-
|
112+
+++
109113

110114
- Privacy Preserving Deep Learning with PyTorch & PySyft, Tutorial
111115
with Jupyter notebooks based on PySyft library,
112116
<https://github.com/OpenMined/PySyft/tree/master/examples/tutorials>
113117

114-
|
118+
+++
115119

116120
- Rules of Machine Learning: Best Practices for ML Engineering, cc-by
117121
licensed ML course developed by Google,
118122
<https://developers.google.com/machine-learning/guides/rules-of-ml>
119123

120-
|
124+
+++
121125

122126
- Scikit-learn User Guide,
123127
<https://scikit-learn.org/stable/user_guide.html>
124128

125-
|
129+
+++
126130

127131
- scikit-learn Tutorials,
128132
<https://scikit-learn.org/stable/tutorial/index.html>
129133

130-
|
134+
135+
+++
131136

132137
- Seeing Theory, A visual introduction to probability and statistics.
133138
Interactive learning book that visualizes the fundamental
134139
statistical concepts, <https://seeing-theory.brown.edu/>
135140

136-
|
141+
142+
+++
137143

138144
- Spinning Up in Deep RL, become a skilled practitioner in deep
139145
reinforcement learning,
140146
<https://spinningup.openai.com/en/latest/index.html>
141147

142-
|
148+
+++
143149

144150
- The Elements of AI, learn the basics of AI,
145151
<https://www.elementsofai.com/>
146152

147-
|
153+
+++
148154

149155
- TensorFlow, Keras and deep learning, without a PhD,
150156
<https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0>
151157

152-
|
158+
+++
159+

NLPlearningresources.md

Lines changed: 3 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -12,20 +12,13 @@ licenses are included. So all references are open access resources.
1212

1313
- Natural Language Processing with Python, <http://www.nltk.org/book/>
1414

15-
15+
+++
1616

1717
- Advanced NLP with spaCY, <https://course.spacy.io/>
1818

1919

20-
20+
+++
2121

2222
- NLP concepts with spaCy (notebook), <https://gist.github.com/nocomplexity/b7c4c0aa5a0b53f4f5ff1c4784084be6>
2323

24-
25-
26-
27-
28-
29-
30-
31-
24+
+++

_toc.yml

Lines changed: 15 additions & 20 deletions
Original file line numberDiff line numberDiff line change
@@ -1,39 +1,34 @@
1-
- file: abstract
2-
3-
- part: Core Concepts
1+
format: jb-book
2+
root: abstract
3+
parts:
4+
- caption: Core Concepts
45
chapters:
56
- file: preface
67
- file: introduction
78
- file: whyossml
89
- file: whatisml
910
- file: ml-business-use
1011
- file: architecture
11-
- file: risks
12+
- file: risks
1213
- file: nlp
13-
- file: ml-challenges
14-
15-
- part: FOSS ML Software
14+
- file: ml-challenges
15+
- caption: FOSS ML Software
1616
chapters:
1717
- file: catalogue
1818
sections:
19-
- file: mlframeworks
20-
- file: mlcomputervision
21-
- file: mltools
22-
- file: mlhosting
23-
- file: nlpframeworks
24-
25-
- part: Open References
19+
- file: mlframeworks
20+
- file: mlcomputervision
21+
- file: mltools
22+
- file: mlhosting
23+
- file: nlpframeworks
24+
- caption: Open References
2625
chapters:
2726
- file: MLlearningresources
2827
- file: NLPlearningresources
29-
30-
- part: About
28+
- caption: About
3129
chapters:
3230
- file: help
3331
- file: about
3432
- file: license
3533
- url: https://www.amazon.com/Free-Machine-Learning-Maikel-Mardjan/dp/B0863S9LQ5/ref=sr_1_2?qid=1585488090&refinements=p_27%3AMaikel+Mardjan&s=books&sr=1-2&text=Maikel+Mardjan
36-
title: 'Support this project:Buy a hardcopy version!'
37-
38-
39-
34+
title: Support this project:Buy a hardcopy version!

0 commit comments

Comments
 (0)