@@ -21,132 +21,139 @@ notebook, but most tutorials offer notebooks ready to use directly.
21
21
22
22
- A Course in Machine Learning, < http://ciml.info/ >
23
23
24
- |
24
+ +++
25
25
26
26
- AutoML: Methods, Systems, Challenges,
27
27
< https://www.ml4aad.org/wp-content/uploads/2019/05/AutoML_Book.pdf >
28
28
29
- |
29
+ +++
30
30
31
31
- Building Safe A.I., A Tutorial for Encrypted Deep Learning,
32
32
< https://iamtrask.github.io/2017/03/17/safe-ai/ >
33
33
34
- |
34
+ +++
35
35
36
36
- Collection of Interactive Machine Learning Examples,
37
37
< https://aihub.cloud.google.com/s?category=notebook >
38
38
39
- |
39
+ +++
40
40
41
41
- Cryptography and Machine Learning, Mixing both for
42
42
privacy-preserving machine learning, < https://mortendahl.github.io/ >
43
43
44
- |
44
+ +++
45
45
46
46
- Dive into Deep Learning, An interactive deep learning book with
47
47
code, math, and discussions, < https://d2l.ai/ >
48
48
49
- |
49
+ +++
50
50
51
51
- Explainable Deep Learning: A Field Guide for the Uninitiated. Great
52
52
learning guide for new and starting researchers in the Deep neural
53
53
network (DNN) field. < https://arxiv.org/pdf/2004.14545.pdf >
54
54
55
- |
55
+ +++
56
+ - Fairness and machine learning, Limitations and Opportunities by Solon Barocas, Moritz Hardt, Arvind Narayanan, https://fairmlbook.org/index.html
57
+
58
+ +++
56
59
57
60
- Foundations of Machine Learning, Understand the Concepts, Techniques
58
61
and Mathematical Frameworks Used by Experts in Machine Learning,
59
62
< https://bloomberg.github.io/foml/#home >
60
63
61
- |
64
+ +++
62
65
63
66
- Interpretable Machine Learning, A Guide for Making Black Box Models
64
67
Explainable,Christoph Molnar,
65
68
< https://christophm.github.io/interpretable-ml-book/ >
66
69
67
- |
70
+ +++
68
71
69
72
- Machine Learning Crash Course with TensorFlow APIs,
70
73
< https://developers.google.com/machine-learning/crash-course/ > This
71
74
is a great course published by Google\' s. It is advertised as a \' A
72
75
self-study guide for aspiring machine learning practitioners\'
73
76
74
- |
77
+ +++
75
78
76
79
- Machine Learning Guides, Simple step-by-step walkthroughs to solve
77
80
common machine learning problems using best practices ,
78
81
< https://developers.google.com/machine-learning/guides/ >
79
82
80
- |
83
+ +++
81
84
82
85
- Machines that Learn in the Wild - Machine learning capabilities,
83
86
limitations and implications,
84
87
< https://media.nesta.org.uk/documents/machines_that_learn_in_the_wild.pdf >
85
88
86
- |
89
+ +++
87
90
88
91
- Mathematics for Machine Learning, < https://mml-book.github.io/ >
89
92
Examples and tutorials for this book are placed on:
90
93
< https://github.com/mml-book/mml-book.github.io >
91
94
92
- |
95
+ +++
93
96
94
97
- Mathematics for Machine Learning, Garrett Thomas. Introductory class
95
98
in machine learning from UC Berkeley(course CS 189/289A). See
96
99
< https://gwthomas.github.io/docs/math4ml.pdf >
97
100
98
- |
101
+
102
+ +++
99
103
100
104
- Practical Deep Learning for Coders v3,
101
105
< https://course.fast.ai/index.html >
102
106
103
- |
107
+ +++
104
108
105
109
- Python Machine Learning course,
106
110
< https://machine-learning-course.readthedocs.io/en/latest/index.html >
107
111
108
- |
112
+ +++
109
113
110
114
- Privacy Preserving Deep Learning with PyTorch & PySyft, Tutorial
111
115
with Jupyter notebooks based on PySyft library,
112
116
< https://github.com/OpenMined/PySyft/tree/master/examples/tutorials >
113
117
114
- |
118
+ +++
115
119
116
120
- Rules of Machine Learning: Best Practices for ML Engineering, cc-by
117
121
licensed ML course developed by Google,
118
122
< https://developers.google.com/machine-learning/guides/rules-of-ml >
119
123
120
- |
124
+ +++
121
125
122
126
- Scikit-learn User Guide,
123
127
< https://scikit-learn.org/stable/user_guide.html >
124
128
125
- |
129
+ +++
126
130
127
131
- scikit-learn Tutorials,
128
132
< https://scikit-learn.org/stable/tutorial/index.html >
129
133
130
- |
134
+
135
+ +++
131
136
132
137
- Seeing Theory, A visual introduction to probability and statistics.
133
138
Interactive learning book that visualizes the fundamental
134
139
statistical concepts, < https://seeing-theory.brown.edu/ >
135
140
136
- |
141
+
142
+ +++
137
143
138
144
- Spinning Up in Deep RL, become a skilled practitioner in deep
139
145
reinforcement learning,
140
146
< https://spinningup.openai.com/en/latest/index.html >
141
147
142
- |
148
+ +++
143
149
144
150
- The Elements of AI, learn the basics of AI,
145
151
< https://www.elementsofai.com/ >
146
152
147
- |
153
+ +++
148
154
149
155
- TensorFlow, Keras and deep learning, without a PhD,
150
156
< https://codelabs.developers.google.com/codelabs/cloud-tensorflow-mnist/#0 >
151
157
152
- |
158
+ +++
159
+
0 commit comments