-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy patheval_detrac.py
119 lines (89 loc) · 3.96 KB
/
eval_detrac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# py-motmetrics - Metrics for multiple object tracker (MOT) benchmarking.
# https://github.com/cheind/py-motmetrics/
#
# MIT License
# Copyright (c) 2017-2020 Christoph Heindl, Jack Valmadre and others.
# See LICENSE file for terms.
"""Compute metrics for trackers using DETRAC challenge ground-truth data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
from collections import OrderedDict
import glob
import logging
import os
from pathlib import Path
import motmetrics as mm
def parse_args():
"""Defines and parses command-line arguments."""
parser = argparse.ArgumentParser(description="""
Compute metrics for trackers using DETRAC challenge ground-truth data.
Files
-----
Ground truth files can be in .XML format or .MAT format as provided by http://detrac-db.rit.albany.edu/download
Test Files for the challenge are reuired to be in MOTchallenge format, they have to comply with the format described in
Milan, Anton, et al.
"Mot16: A benchmark for multi-object tracking."
arXiv preprint arXiv:1603.00831 (2016).
https://motchallenge.net/
Directory Structure
---------
Layout for ground truth data
<GT_ROOT>/<SEQUENCE_1>.txt
<GT_ROOT>/<SEQUENCE_2>.txt
...
OR
<GT_ROOT>/<SEQUENCE_1>.mat
<GT_ROOT>/<SEQUENCE_2>.mat
...
Layout for test data
<TEST_ROOT>/<SEQUENCE_1>.txt
<TEST_ROOT>/<SEQUENCE_2>.txt
...
Sequences of ground truth and test will be matched according to the `<SEQUENCE_X>`
string.""", formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('groundtruths', type=str, help='Directory containing ground truth files.')
parser.add_argument('tests', type=str, help='Directory containing tracker result files')
parser.add_argument('--loglevel', type=str, help='Log level', default='info')
parser.add_argument('--gtfmt', type=str, help='Groundtruth data format', default='detrac-xml')
parser.add_argument('--tsfmt', type=str, help='Test data format', default='mot15-2D')
parser.add_argument('--solver', type=str, help='LAP solver to use')
return parser.parse_args()
def compare_dataframes(gts, ts):
"""Builds accumulator for each sequence."""
accs = []
names = []
for k, tsacc in ts.items():
if k in gts:
logging.info('Comparing %s...', k)
accs.append(mm.utils.compare_to_groundtruth(gts[k], tsacc, 'iou', distth=0.5))
names.append(k)
else:
logging.warning('No ground truth for %s, skipping.', k)
return accs, names
def main():
# pylint: disable=missing-function-docstring
args = parse_args()
loglevel = getattr(logging, args.loglevel.upper(), None)
if not isinstance(loglevel, int):
raise ValueError('Invalid log level: {} '.format(args.loglevel))
logging.basicConfig(level=loglevel, format='%(asctime)s %(levelname)s - %(message)s', datefmt='%I:%M:%S')
if args.solver:
mm.lap.default_solver = args.solver
gtfiles = glob.glob(os.path.join(args.groundtruths, '*'))
tsfiles = glob.glob(os.path.join(args.tests, '*'))
logging.info('Found %d groundtruths and %d test files.', len(gtfiles), len(tsfiles))
logging.info('Available LAP solvers %s', str(mm.lap.available_solvers))
logging.info('Default LAP solver \'%s\'', mm.lap.default_solver)
logging.info('Loading files.')
gt = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt=args.gtfmt)) for f in gtfiles])
ts = OrderedDict([(os.path.splitext(Path(f).parts[-1])[0], mm.io.loadtxt(f, fmt=args.tsfmt)) for f in tsfiles])
mh = mm.metrics.create()
accs, names = compare_dataframes(gt, ts)
logging.info('Running metrics')
summary = mh.compute_many(accs, names=names, metrics=mm.metrics.motchallenge_metrics, generate_overall=True)
print(mm.io.render_summary(summary, formatters=mh.formatters, namemap=mm.io.motchallenge_metric_names))
logging.info('Completed')
if __name__ == '__main__':
main()