-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathtrain_multi_step.py
288 lines (234 loc) · 11.2 KB
/
train_multi_step.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import torch
import numpy as np
import argparse
import time
from util import *
from trainer import Trainer
from net import gtnet
def str_to_bool(value):
if isinstance(value, bool):
return value
if value.lower() in {'false', 'f', '0', 'no', 'n'}:
return False
elif value.lower() in {'true', 't', '1', 'yes', 'y'}:
return True
raise ValueError(f'{value} is not a valid boolean value')
parser = argparse.ArgumentParser()
parser.add_argument('--device',type=str,default='cuda:1',help='')
parser.add_argument('--data',type=str,default='data/METR-LA',help='data path')
parser.add_argument('--adj_data', type=str,default='data/sensor_graph/adj_mx.pkl',help='adj data path')
parser.add_argument('--gcn_true', type=str_to_bool, default=True, help='whether to add graph convolution layer')
parser.add_argument('--buildA_true', type=str_to_bool, default=True,help='whether to construct adaptive adjacency matrix')
parser.add_argument('--load_static_feature', type=str_to_bool, default=False,help='whether to load static feature')
parser.add_argument('--cl', type=str_to_bool, default=True,help='whether to do curriculum learning')
parser.add_argument('--gcn_depth',type=int,default=2,help='graph convolution depth')
parser.add_argument('--num_nodes',type=int,default=207,help='number of nodes/variables')
parser.add_argument('--dropout',type=float,default=0.3,help='dropout rate')
parser.add_argument('--subgraph_size',type=int,default=20,help='k')
parser.add_argument('--node_dim',type=int,default=40,help='dim of nodes')
parser.add_argument('--dilation_exponential',type=int,default=1,help='dilation exponential')
parser.add_argument('--conv_channels',type=int,default=32,help='convolution channels')
parser.add_argument('--residual_channels',type=int,default=32,help='residual channels')
parser.add_argument('--skip_channels',type=int,default=64,help='skip channels')
parser.add_argument('--end_channels',type=int,default=128,help='end channels')
parser.add_argument('--in_dim',type=int,default=2,help='inputs dimension')
parser.add_argument('--seq_in_len',type=int,default=12,help='input sequence length')
parser.add_argument('--seq_out_len',type=int,default=12,help='output sequence length')
parser.add_argument('--layers',type=int,default=3,help='number of layers')
parser.add_argument('--batch_size',type=int,default=64,help='batch size')
parser.add_argument('--learning_rate',type=float,default=0.001,help='learning rate')
parser.add_argument('--weight_decay',type=float,default=0.0001,help='weight decay rate')
parser.add_argument('--clip',type=int,default=5,help='clip')
parser.add_argument('--step_size1',type=int,default=2500,help='step_size')
parser.add_argument('--step_size2',type=int,default=100,help='step_size')
parser.add_argument('--epochs',type=int,default=100,help='')
parser.add_argument('--print_every',type=int,default=50,help='')
parser.add_argument('--seed',type=int,default=101,help='random seed')
parser.add_argument('--save',type=str,default='./save/',help='save path')
parser.add_argument('--expid',type=int,default=1,help='experiment id')
parser.add_argument('--propalpha',type=float,default=0.05,help='prop alpha')
parser.add_argument('--tanhalpha',type=float,default=3,help='adj alpha')
parser.add_argument('--num_split',type=int,default=1,help='number of splits for graphs')
parser.add_argument('--runs',type=int,default=10,help='number of runs')
args = parser.parse_args()
torch.set_num_threads(3)
def main(runid):
# torch.manual_seed(args.seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
# np.random.seed(args.seed)
#load data
device = torch.device(args.device)
dataloader = load_dataset(args.data, args.batch_size, args.batch_size, args.batch_size)
scaler = dataloader['scaler']
predefined_A = load_adj(args.adj_data)
predefined_A = torch.tensor(predefined_A)-torch.eye(args.num_nodes)
predefined_A = predefined_A.to(device)
# if args.load_static_feature:
# static_feat = load_node_feature('data/sensor_graph/location.csv')
# else:
# static_feat = None
model = gtnet(args.gcn_true, args.buildA_true, args.gcn_depth, args.num_nodes,
device, predefined_A=predefined_A,
dropout=args.dropout, subgraph_size=args.subgraph_size,
node_dim=args.node_dim,
dilation_exponential=args.dilation_exponential,
conv_channels=args.conv_channels, residual_channels=args.residual_channels,
skip_channels=args.skip_channels, end_channels= args.end_channels,
seq_length=args.seq_in_len, in_dim=args.in_dim, out_dim=args.seq_out_len,
layers=args.layers, propalpha=args.propalpha, tanhalpha=args.tanhalpha, layer_norm_affline=True)
print(args)
print('The recpetive field size is', model.receptive_field)
nParams = sum([p.nelement() for p in model.parameters()])
print('Number of model parameters is', nParams)
engine = Trainer(model, args.learning_rate, args.weight_decay, args.clip, args.step_size1, args.seq_out_len, scaler, device, args.cl)
print("start training...",flush=True)
his_loss =[]
val_time = []
train_time = []
minl = 1e5
for i in range(1,args.epochs+1):
train_loss = []
train_mape = []
train_rmse = []
t1 = time.time()
dataloader['train_loader'].shuffle()
for iter, (x, y) in enumerate(dataloader['train_loader'].get_iterator()):
trainx = torch.Tensor(x).to(device)
trainx= trainx.transpose(1, 3)
trainy = torch.Tensor(y).to(device)
trainy = trainy.transpose(1, 3)
if iter%args.step_size2==0:
perm = np.random.permutation(range(args.num_nodes))
num_sub = int(args.num_nodes/args.num_split)
for j in range(args.num_split):
if j != args.num_split-1:
id = perm[j * num_sub:(j + 1) * num_sub]
else:
id = perm[j * num_sub:]
id = torch.tensor(id).to(device)
tx = trainx[:, :, id, :]
ty = trainy[:, :, id, :]
metrics = engine.train(tx, ty[:,0,:,:],id)
train_loss.append(metrics[0])
train_mape.append(metrics[1])
train_rmse.append(metrics[2])
if iter % args.print_every == 0 :
log = 'Iter: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}'
print(log.format(iter, train_loss[-1], train_mape[-1], train_rmse[-1]),flush=True)
t2 = time.time()
train_time.append(t2-t1)
#validation
valid_loss = []
valid_mape = []
valid_rmse = []
s1 = time.time()
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
testy = torch.Tensor(y).to(device)
testy = testy.transpose(1, 3)
metrics = engine.eval(testx, testy[:,0,:,:])
valid_loss.append(metrics[0])
valid_mape.append(metrics[1])
valid_rmse.append(metrics[2])
s2 = time.time()
log = 'Epoch: {:03d}, Inference Time: {:.4f} secs'
print(log.format(i,(s2-s1)))
val_time.append(s2-s1)
mtrain_loss = np.mean(train_loss)
mtrain_mape = np.mean(train_mape)
mtrain_rmse = np.mean(train_rmse)
mvalid_loss = np.mean(valid_loss)
mvalid_mape = np.mean(valid_mape)
mvalid_rmse = np.mean(valid_rmse)
his_loss.append(mvalid_loss)
log = 'Epoch: {:03d}, Train Loss: {:.4f}, Train MAPE: {:.4f}, Train RMSE: {:.4f}, Valid Loss: {:.4f}, Valid MAPE: {:.4f}, Valid RMSE: {:.4f}, Training Time: {:.4f}/epoch'
print(log.format(i, mtrain_loss, mtrain_mape, mtrain_rmse, mvalid_loss, mvalid_mape, mvalid_rmse, (t2 - t1)),flush=True)
if mvalid_loss<minl:
torch.save(engine.model.state_dict(), args.save + "exp" + str(args.expid) + "_" + str(runid) +".pth")
minl = mvalid_loss
print("Average Training Time: {:.4f} secs/epoch".format(np.mean(train_time)))
print("Average Inference Time: {:.4f} secs".format(np.mean(val_time)))
bestid = np.argmin(his_loss)
engine.model.load_state_dict(torch.load(args.save + "exp" + str(args.expid) + "_" + str(runid) +".pth"))
print("Training finished")
print("The valid loss on best model is", str(round(his_loss[bestid],4)))
#valid data
outputs = []
realy = torch.Tensor(dataloader['y_val']).to(device)
realy = realy.transpose(1,3)[:,0,:,:]
for iter, (x, y) in enumerate(dataloader['val_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1,3)
with torch.no_grad():
preds = engine.model(testx)
preds = preds.transpose(1,3)
outputs.append(preds.squeeze())
yhat = torch.cat(outputs,dim=0)
yhat = yhat[:realy.size(0),...]
pred = scaler.inverse_transform(yhat)
vmae, vmape, vrmse = metric(pred,realy)
#test data
outputs = []
realy = torch.Tensor(dataloader['y_test']).to(device)
realy = realy.transpose(1, 3)[:, 0, :, :]
for iter, (x, y) in enumerate(dataloader['test_loader'].get_iterator()):
testx = torch.Tensor(x).to(device)
testx = testx.transpose(1, 3)
with torch.no_grad():
preds = engine.model(testx)
preds = preds.transpose(1, 3)
outputs.append(preds.squeeze())
yhat = torch.cat(outputs, dim=0)
yhat = yhat[:realy.size(0), ...]
mae = []
mape = []
rmse = []
for i in range(args.seq_out_len):
pred = scaler.inverse_transform(yhat[:, :, i])
real = realy[:, :, i]
metrics = metric(pred, real)
log = 'Evaluate best model on test data for horizon {:d}, Test MAE: {:.4f}, Test MAPE: {:.4f}, Test RMSE: {:.4f}'
print(log.format(i + 1, metrics[0], metrics[1], metrics[2]))
mae.append(metrics[0])
mape.append(metrics[1])
rmse.append(metrics[2])
return vmae, vmape, vrmse, mae, mape, rmse
if __name__ == "__main__":
vmae = []
vmape = []
vrmse = []
mae = []
mape = []
rmse = []
for i in range(args.runs):
vm1, vm2, vm3, m1, m2, m3 = main(i)
vmae.append(vm1)
vmape.append(vm2)
vrmse.append(vm3)
mae.append(m1)
mape.append(m2)
rmse.append(m3)
mae = np.array(mae)
mape = np.array(mape)
rmse = np.array(rmse)
amae = np.mean(mae,0)
amape = np.mean(mape,0)
armse = np.mean(rmse,0)
smae = np.std(mae,0)
smape = np.std(mape,0)
srmse = np.std(rmse,0)
print('\n\nResults for 10 runs\n\n')
#valid data
print('valid\tMAE\tRMSE\tMAPE')
log = 'mean:\t{:.4f}\t{:.4f}\t{:.4f}'
print(log.format(np.mean(vmae),np.mean(vrmse),np.mean(vmape)))
log = 'std:\t{:.4f}\t{:.4f}\t{:.4f}'
print(log.format(np.std(vmae),np.std(vrmse),np.std(vmape)))
print('\n\n')
#test data
print('test|horizon\tMAE-mean\tRMSE-mean\tMAPE-mean\tMAE-std\tRMSE-std\tMAPE-std')
for i in [2,5,11]:
log = '{:d}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'
print(log.format(i+1, amae[i], armse[i], amape[i], smae[i], srmse[i], smape[i]))