forked from PaperHelper/KoBART-summarization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
237 lines (203 loc) · 9.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import argparse
import logging
import os
import numpy as np
import pandas as pd
import pytorch_lightning as pl
import torch
from pytorch_lightning import loggers as pl_loggers
from torch.utils.data import DataLoader, Dataset
from dataset import KoBARTSummaryDataset
from transformers import BartForConditionalGeneration, PreTrainedTokenizerFast
from transformers.optimization import AdamW, get_cosine_schedule_with_warmup
from kobart import get_pytorch_kobart_model, get_kobart_tokenizer
parser = argparse.ArgumentParser(description='KoBART Summarization')
parser.add_argument('--checkpoint_path',
type=str,
#default='logs/kobart_summary-last.ckpt',
help='checkpoint path')
logger = logging.getLogger()
logger.setLevel(logging.INFO)
class ArgsBase():
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(
parents=[parent_parser], add_help=False)
parser.add_argument('--train_file',
type=str,
default='data/train.tsv',
help='train file')
parser.add_argument('--test_file',
type=str,
default='data/test.tsv',
help='test file')
parser.add_argument('--batch_size',
type=int,
default=14,
help='')
parser.add_argument('--max_len',
type=int,
default=512,
help='max seq len')
return parser
class KobartSummaryModule(pl.LightningDataModule):
def __init__(self, train_file,
test_file, tok,
max_len=512,
batch_size=8,
num_workers=5):
super().__init__()
self.batch_size = batch_size
self.max_len = max_len
self.train_file_path = train_file
self.test_file_path = test_file
if tok is None:
self.tok = get_kobart_tokenizer()
else:
self.tok = tok
self.num_workers = num_workers
@staticmethod
def add_model_specific_args(parent_parser):
parser = argparse.ArgumentParser(
parents=[parent_parser], add_help=False)
parser.add_argument('--num_workers',
type=int,
default=5,
help='num of worker for dataloader')
return parser
# OPTIONAL, called for every GPU/machine (assigning state is OK)
def setup(self, stage):
# split dataset
self.train = KoBARTSummaryDataset(self.train_file_path,
self.tok,
self.max_len)
self.test = KoBARTSummaryDataset(self.test_file_path,
self.tok,
self.max_len)
def train_dataloader(self):
train = DataLoader(self.train,
batch_size=self.batch_size,
num_workers=self.num_workers, shuffle=True)
return train
def val_dataloader(self):
val = DataLoader(self.test,
batch_size=self.batch_size,
num_workers=self.num_workers, shuffle=False)
return val
def test_dataloader(self):
test = DataLoader(self.test,
batch_size=self.batch_size,
num_workers=self.num_workers, shuffle=False)
return test
class Base(pl.LightningModule):
def __init__(self, hparams, **kwargs) -> None:
super(Base, self).__init__()
self.hparams = hparams
@staticmethod
def add_model_specific_args(parent_parser):
# add model specific args
parser = argparse.ArgumentParser(
parents=[parent_parser], add_help=False)
parser.add_argument('--batch-size',
type=int,
default=14,
help='batch size for training (default: 96)')
parser.add_argument('--lr',
type=float,
default=3e-5,
help='The initial learning rate')
parser.add_argument('--warmup_ratio',
type=float,
default=0.1,
help='warmup ratio')
parser.add_argument('--model_path',
type=str,
default=None,
help='kobart model path')
return parser
def configure_optimizers(self):
# Prepare optimizer
param_optimizer = list(self.model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = AdamW(optimizer_grouped_parameters,
lr=self.hparams.lr, correct_bias=False)
# warm up lr
# num_workers = (self.hparams.gpus if self.hparams.gpus is not None else 1) * (self.hparams.num_nodes if self.hparams.num_nodes is not None else 1)
num_workers = self.hparams.num_workers
data_len = len(self.train_dataloader().dataset)
logging.info(f'number of workers {num_workers}, data length {data_len}')
num_train_steps = int(data_len / (self.hparams.batch_size * num_workers) * self.hparams.max_epochs)
logging.info(f'num_train_steps : {num_train_steps}')
num_warmup_steps = int(num_train_steps * self.hparams.warmup_ratio)
logging.info(f'num_warmup_steps : {num_warmup_steps}')
scheduler = get_cosine_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps, num_training_steps=num_train_steps)
lr_scheduler = {'scheduler': scheduler,
'monitor': 'loss', 'interval': 'step',
'frequency': 1}
return [optimizer], [lr_scheduler]
class KoBARTConditionalGeneration(Base):
def __init__(self, hparams, **kwargs):
super(KoBARTConditionalGeneration, self).__init__(hparams, **kwargs)
self.model = BartForConditionalGeneration.from_pretrained(get_pytorch_kobart_model())
self.model.train()
self.bos_token = '<s>'
self.eos_token = '</s>'
self.pad_token_id = 0
self.tokenizer = get_kobart_tokenizer()
def forward(self, inputs):
attention_mask = inputs['input_ids'].ne(self.pad_token_id).float()
decoder_attention_mask = inputs['decoder_input_ids'].ne(self.pad_token_id).float()
return self.model(input_ids=inputs['input_ids'],
attention_mask=attention_mask,
decoder_input_ids=inputs['decoder_input_ids'],
decoder_attention_mask=decoder_attention_mask,
labels=inputs['labels'], return_dict=True)
def training_step(self, batch, batch_idx):
outs = self(batch)
loss = outs.loss
self.log('train_loss', loss, prog_bar=True)
return loss
def validation_step(self, batch, batch_idx):
outs = self(batch)
loss = outs['loss']
return (loss)
def validation_epoch_end(self, outputs):
losses = []
for loss in outputs:
losses.append(loss)
self.log('val_loss', torch.stack(losses).mean(), prog_bar=True)
if __name__ == '__main__':
parser = Base.add_model_specific_args(parser)
parser = ArgsBase.add_model_specific_args(parser)
parser = KobartSummaryModule.add_model_specific_args(parser)
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
logging.info(args)
model = KoBARTConditionalGeneration(args)
dm = KobartSummaryModule(args.train_file,
args.test_file,
None,
batch_size=args.batch_size,
max_len=args.max_len,
num_workers=args.num_workers)
checkpoint_callback = pl.callbacks.ModelCheckpoint(monitor='val_loss',
dirpath=args.default_root_dir,
filename='model_chp/{epoch:02d}-{val_loss:.3f}',
verbose=True,
save_last=True,
mode='min',
save_top_k=-1,
prefix='kobart_summary')
tb_logger = pl_loggers.TensorBoardLogger(os.path.join(args.default_root_dir, 'tb_logs'))
lr_logger = pl.callbacks.LearningRateMonitor()
trainer = pl.Trainer.from_argparse_args(args, logger=tb_logger,
callbacks=[checkpoint_callback, lr_logger],resume_from_checkpoint=args.checkpoint_path)
trainer.fit(model, dm)