This project was completed as a part of our Bachelor's thesis. The project was carried out during the second half of the academic year of 2022-2023. This project provides a classifier for ALMA (Atacama Large Millimeter/submillimeter Array) data, specifically for the purpose of detecting protoplanetary disks in the data.
- AK1
- AK2
- AK3
Install the project with:
# TODO
Answer 1
Answer 2
- F1
- F2
- F3
├── alma-classifier/
│ ├── __init__.py
│ ├── alma_classifier/
│ │ ├── __init__.py
│ │ │
│ │ ├── data_acquisition/
│ │ │ ├── __init__.py
│ │ │ ├── alminer_mod.py
│ │ │ ├── constants_copy.py
│ │ │ └── mine_n_fits.py
│ │ ├── image_processing/
│ │ │ ├── __init__.py
│ │ │ ├── image_augmentation.py
│ │ │ └── pre_processing.py
│ │ ├── Imager.py
│ │ ├── models/
│ │ │ ├── __init__.py
│ │ │ ├── pytorch/
│ │ │ │ ├── __init__.py
│ │ │ │ └── model_01/
│ │ │ │ ├── __init__.py
│ │ │ │ ├── constants.py
│ │ │ │ ├── evaluation.py
│ │ │ │ ├── model.py
│ │ │ │ └── training.py
│ │ │ └── tensorflow/
│ │ │ ├── __init__.py
│ │ │ └── model_01/
│ │ │ ├── __init__.py
│ │ │ ├── constants.py
│ │ │ ├── evaluation.py
│ │ │ ├── model.py
│ │ │ └── training.py
│ │ ├── pipeline_pytorch.py
│ │ ├── pipeline_tensorflow.py
│ │ └── utils/
│ │ └── __init__.py
│ ├── config.py
│ ├── data/
│ │ ├── datasets/
│ │ │ ├── raw/
│ │ │ │ ├── neg/
│ │ │ │ └── pos/
│ │ │ └── reviewed/
│ │ │ ├── test/
│ │ │ │ ├── neg/
│ │ │ │ └── pos/
│ │ │ ├── train/
│ │ │ │ ├── neg/
│ │ │ │ └── pos/
│ │ │ └── val/
│ │ │ ├── neg/
│ │ │ └── pos/
│ │ └── fits/
│ │ ├── neg/
│ │ └── pos/
│ ├── docs/
│ │ └── branches.md
│ ├── LICENSE
│ ├── notebooks/
│ │ ├── data_acquisition.ipynb
│ │ ├── model_evaluation.ipynb
│ │ └── model_training.ipynb
│ ├── requirements.txt
│ └── tests/
│ ├── test_data_acquisition.py
│ ├── test_model_pytorch.py
│ ├── test_model_tensorflow.py
│ └── test_pre_processing.py
This directory contains the source code for the ALMA classifier.
This directory contains the implementation of the ALMA classifier.
This directory contains the implementation for data acquisition.
alminer_mod.py
: implementation of Alminer class that mines the data from the FITS files.
constants_copy.py
: constant variables for data acquisition.
mine_n_fits.py
: implementation of mine_n_fits function that reads the FITS files.
This directory contains the implementation for image processing.
image_augmentation.py
: implementation of image augmentation.
pre_processing.py
: implementation of image pre-processing.
This directory contains the implementation of the neural network models.
pytorch/
: implementation of the PyTorch model.
tensorflow/
: implementation of the TensorFlow model.
This directory contains utility functions.
Imager.py
: implementation of the Imager class.
pipeline_pytorch.py
: implementation of the PyTorch pipeline to keep model sandboxed.
pipeline_tensorflow.py
: implementation of the TensorFlow pipeline.
config.py
: configuration file with, if needed, global settings for whole project
LICENSE
: license file.
This directory is where all data used in the project is stored. It is divided into two subdirectories:
This directory contains the datasets.
raw/
: raw genererated training data.
reviewed/
: reviewed raw data.
fits/
This directory contains the FITS files.
Other Directories/files docs/: documentation. notebooks/: This directory contains Jupyter notebooks used for exploratory data analysis and experimentation. tests/: unit tests. reports/: This directory contains any reports generated by the project, including visualizations, analysis, and findings. requirements.txt: This file lists all the Python packages required to run the project. setup.py: This file contains the project metadata required for packaging the project as a Python distribution.