An example on STL10:
SPICE-Self:
python tools/eval_self.py --config-file configs/stl10/eval.py --weight model_zoo/self_model_stl10.pth.tar --all 1
SPICE
python tools/eval_semi.py --load_path ./model_zoo/model_stl10.pth --net WideResNet_stl10 --widen_factor 2 --data_dir ./datasets/stl10 --dataset stl10 --all 1 --num_classes 10
SPICE-Self*:
python tools/eval_self.py --config-file configs/stl10/eval.py --weight model_zoo/self_model_stl10_cls.pth.tar --all 0
SPICE*
python tools/eval_semi.py --load_path ./model_zoo/model_stl10.pth --net WideResNet_stl10 --widen_factor 2 --data_dir ./datasets/stl10 --dataset stl10 --all 0 --num_classes 10
- Visualization of learned cluster semantics
python tools/eval_self.py --config-file configs/stl10/eval.py --weight model_zoo/self_model_stl10.pth.tar --all 1 --proto 1 --embedding ./results/stl10/embedding/feas_moco_512_l2.npy
Then, the visualization results will be saved in ./results/stl10/eval/proto/
, including both the prototype examples and the corresponding localization results.