-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtsne.py
138 lines (111 loc) · 6.25 KB
/
tsne.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import torch
import pickle
import warnings
import argparse
import torchvision
import numpy as np
import pandas as pd
import seaborn as sns
from tqdm import tqdm
import matplotlib.pyplot as plt
from PIL import Image, ImageFile
from sklearn.manifold import TSNE
from sklearn.decomposition import PCA
from torch.utils.data import Dataset, DataLoader
from pkgs.openai.clip import load as load_model
ImageFile.LOAD_TRUNCATED_IMAGES = True
warnings.filterwarnings("ignore")
def get_model(args, checkpoint):
model, processor = load_model(name = args.model_name, pretrained = False)
if(args.device == "cpu"): model.float()
model.to(args.device)
state_dict = torch.load(checkpoint, map_location = args.device)["state_dict"]
if(next(iter(state_dict.items()))[0].startswith("module")):
state_dict = {key[len("module."):]: value for key, value in state_dict.items()}
model.load_state_dict(state_dict)
model.eval()
return model, processor
class ImageCaptionDataset(Dataset):
def __init__(self, path, images, captions, processor):
self.root = os.path.dirname(path)
self.processor = processor
self.images = images
self.captions = self.processor.process_text(captions)
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
item = {}
image = Image.open(os.path.join(self.root, self.images[idx]))
item["input_ids"] = self.captions["input_ids"][idx]
item["attention_mask"] = self.captions["attention_mask"][idx]
item["pixel_values"] = self.processor.process_image(image)
return item
def get_embeddings(model, dataloader, processor, args):
device = args.device
list_embeddings = []
with torch.no_grad():
for batch in tqdm(dataloader):
input_ids, attention_mask, pixel_values = batch["input_ids"].to(device, non_blocking = True), batch["attention_mask"].to(device, non_blocking = True), batch["pixel_values"].to(device, non_blocking = True)
outputs = model(input_ids = input_ids, attention_mask = attention_mask, pixel_values = pixel_values)
list_embeddings.append(outputs.image_embeds)
return torch.cat(list_embeddings, dim = 0).cpu().detach().numpy()
def plot_embeddings(args):
args.device = torch.device(f"cuda:{args.device_id}" if torch.cuda.is_available() else "cpu")
if not os.path.exists(args.save_data):
checkpoint = f'epoch_{args.epoch}.pt'
model, processor = get_model(args, os.path.join(args.checkpoints_dir, checkpoint))
df = pd.read_csv(args.original_csv)
# to consider the top-k samples that were detected as backdoored
if args.plot_detected_only:
df = df[df['is_backdoor'] == 1]
images, captions = df['image'].tolist(), df['caption'].tolist()
else:
images, captions = df['image'].tolist()[:10000], df['caption'].tolist()[:10000]
backdoor_indices = list(filter(lambda x: 'backdoor' in images[x], range(len(images))))
backdoor_images, backdoor_captions = [images[x] for x in backdoor_indices], [captions[x] for x in backdoor_indices]
clean_indices = list(filter(lambda x: 'backdoor' not in images[x], range(len(images))))
clean_images, clean_captions = [images[x] for x in clean_indices], [captions[x] for x in clean_indices]
dataset_original = ImageCaptionDataset(args.original_csv, clean_images, clean_captions, processor)
dataset_backdoor = ImageCaptionDataset(args.original_csv, backdoor_images, backdoor_captions, processor)
dataloader_original = DataLoader(dataset_original, batch_size = args.batch_size, shuffle = False, pin_memory = True, drop_last = False)
dataloader_backdoor = DataLoader(dataset_backdoor, batch_size = args.batch_size, shuffle = False, pin_memory = True, drop_last = False)
original_images_embeddings = get_embeddings(model, dataloader_original, processor, args)
backdoor_images_embeddings = get_embeddings(model, dataloader_backdoor, processor, args)
len_original = len(original_images_embeddings)
all_embeddings = np.concatenate([original_images_embeddings, backdoor_images_embeddings], axis = 0)
print(len_original)
with open(args.save_data, 'wb') as f:
pickle.dump((all_embeddings, len_original), f)
with open(args.save_data, 'rb') as f:
all_embeddings, len_original = pickle.load(f)
fig = plt.figure()
# ax = fig.add_subplot(projection='2d')
tsne = TSNE(n_components=2, verbose=1, perplexity=10, n_iter=1000)
results = tsne.fit_transform(all_embeddings)
# pca = PCA(n_components = 2)
# results = pca.fit_transform(all_embeddings)
# print(pca.explained_variance_ratio_)
plt.scatter(results[:len_original, 0], results[:len_original, 1], label = 'Original')
plt.scatter(results[len_original:, 0], results[len_original:, 1], label = 'Backdoor')
plt.grid()
plt.legend()
plt.title(args.title)
plt.tight_layout()
os.makedirs(os.path.dirname(args.save_fig), exist_ok = True)
plt.savefig(args.save_fig)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--original_csv", type = str, default = None, help = "original csv with captions and images")
parser.add_argument("--device_id", type = str, default = None, help = "device id")
parser.add_argument("--model_name", type = str, default = "RN50", choices = ["RN50", "RN101", "RN50x4", "ViT-B/32"], help = "Model Name")
parser.add_argument("--checkpoints_dir", type = str, default = "checkpoints/clip/", help = "Path to checkpoint directories")
parser.add_argument("--save_data", type = str, default = None, help = "Save data")
parser.add_argument("--save_fig", type = str, default = None, help = "Save fig png")
parser.add_argument("--batch_size", type = int, default = 128, help = "Batch Size")
parser.add_argument("--epoch", type=int, default=64, help="Epoch")
parser.add_argument("--title", type=str, default=None, help="Title for plot")
parser.add_argument("--plot_detected_only", action="store_true", default=False,
help="if True, we only plot the embeddings of images that were detected as backdoored (is_backdoor = 1)")
args = parser.parse_args()
plot_embeddings(args)