-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain.cpp
359 lines (310 loc) · 11.7 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
#include <iostream>
#include "src/NonManifoldMesh.h"
#include "src/SlabMesh.h"
void LoadInputNMM(Mesh* input, SlabMesh* slabMesh, std::string maname) {
std::ifstream mastream(maname.c_str());
NonManifoldMesh newinputnmm;
newinputnmm.numVertices = 0;
newinputnmm.numEdges = 0;
newinputnmm.numFaces = 0;
int nv, ne, nf;
mastream >> nv >> ne >> nf;
// slab mesh
slabMesh->numVertices = 0;
slabMesh->numEdges = 0;
slabMesh->numFaces = 0;
slabMesh->bound_weight = 0.1;
double len[4];
len[0] = input->m_max[0] - input->m_min[0];
len[1] = input->m_max[1] - input->m_min[1];
len[2] = input->m_max[2] - input->m_min[2];
len[3] = sqrt(len[0] * len[0] + len[1] * len[1] + len[2] * len[2]);
newinputnmm.diameter = len[3];
for (unsigned i = 0; i < input->pVertexList.size(); i++)
newinputnmm.BoundaryPoints.push_back(SamplePoint(
input->pVertexList[i]->point()[0], input->pVertexList[i]->point()[1],
input->pVertexList[i]->point()[2]));
for (unsigned i = 0; i < nv; i++) {
char ch;
double x, y, z, r;
mastream >> ch >> x >> y >> z >> r;
// handle the slab mesh
Bool_SlabVertexPointer bsvp2;
bsvp2.first = true;
bsvp2.second = new SlabVertex;
(*bsvp2.second).sphere.center[0] = x / input->bb_diagonal_length;
(*bsvp2.second).sphere.center[1] = y / input->bb_diagonal_length;
(*bsvp2.second).sphere.center[2] = z / input->bb_diagonal_length;
(*bsvp2.second).sphere.radius = r / input->bb_diagonal_length;
(*bsvp2.second).index = slabMesh->vertices.size();
slabMesh->vertices.push_back(bsvp2);
slabMesh->numVertices++;
}
for (unsigned i = 0; i < ne; i++) {
char ch;
unsigned ver[2];
mastream >> ch;
mastream >> ver[0];
mastream >> ver[1];
// handle the slab mesh
Bool_SlabEdgePointer bsep2;
bsep2.first = true;
bsep2.second = new SlabEdge;
(*bsep2.second).vertices_.first = ver[0];
(*bsep2.second).vertices_.second = ver[1];
(*slabMesh->vertices[(*bsep2.second).vertices_.first].second)
.edges_.insert(slabMesh->edges.size());
(*slabMesh->vertices[(*bsep2.second).vertices_.second].second)
.edges_.insert(slabMesh->edges.size());
(*bsep2.second).index = slabMesh->edges.size();
slabMesh->edges.push_back(bsep2);
slabMesh->numEdges++;
}
for (unsigned i = 0; i < nf; i++) {
char ch;
unsigned vid[3];
unsigned eid[3];
mastream >> ch >> vid[0] >> vid[1] >> vid[2];
// handle the slab mesh
Bool_SlabFacePointer bsfp2;
bsfp2.first = true;
bsfp2.second = new SlabFace;
(*bsfp2.second).vertices_.insert(vid[0]);
(*bsfp2.second).vertices_.insert(vid[1]);
(*bsfp2.second).vertices_.insert(vid[2]);
if (slabMesh->Edge(vid[0], vid[1], eid[0]))
(*bsfp2.second).edges_.insert(eid[0]);
if (slabMesh->Edge(vid[0], vid[2], eid[1]))
(*bsfp2.second).edges_.insert(eid[1]);
if (slabMesh->Edge(vid[1], vid[2], eid[2]))
(*bsfp2.second).edges_.insert(eid[2]);
(*bsfp2.second).index = slabMesh->faces.size();
slabMesh->vertices[vid[0]].second->faces_.insert(slabMesh->faces.size());
// slab_mesh.vertices[vid[0]].second->related_face += 2;
slabMesh->vertices[vid[1]].second->faces_.insert(slabMesh->faces.size());
// slab_mesh.vertices[vid[1]].second->related_face += 2;
slabMesh->vertices[vid[2]].second->faces_.insert(slabMesh->faces.size());
// slab_mesh.vertices[vid[2]].second->related_face += 2;
slabMesh->edges[eid[0]].second->faces_.insert(slabMesh->faces.size());
slabMesh->edges[eid[1]].second->faces_.insert(slabMesh->faces.size());
slabMesh->edges[eid[2]].second->faces_.insert(slabMesh->faces.size());
slabMesh->faces.push_back(bsfp2);
slabMesh->numFaces++;
}
// newinputnmm.ComputeFacesNormal();
// newinputnmm.ComputeFacesCentroid();
// newinputnmm.ComputeFacesSimpleTriangles();
// newinputnmm.ComputeEdgesCone();
// input_nmm = newinputnmm;
slabMesh->iniNumVertices = slabMesh->numVertices;
slabMesh->iniNumEdges = slabMesh->numEdges;
slabMesh->iniNumFaces = slabMesh->numFaces;
slabMesh->CleanIsolatedVertices();
slabMesh->computebb();
slabMesh->ComputeFacesCentroid();
slabMesh->ComputeFacesNormal();
slabMesh->ComputeVerticesNormal();
slabMesh->ComputeEdgesCone();
slabMesh->ComputeFacesSimpleTriangles();
slabMesh->DistinguishVertexType();
}
bool importMA(Mesh* input, SlabMesh* slabMesh, std::string maname) {
// std::string filename = filename + ".ma";
// if (!std::filesystem::exists(filename)) {
// std::cerr << "Related .ma file is missing." << std::endl;
// return false;
// }
std::cout << "Loading ma file " << maname << std::endl;
// bool success = false;
// m_pThreeDimensionalShape->input_nmm.meshname = filename;
// m_pThreeDimensionalShape->input_nmm.domain =
// m_pThreeDimensionalShape->input.domain;
// m_pThreeDimensionalShape->input_nmm.pmesh =
// &(m_pThreeDimensionalShape->input);
// m_pThreeDimensionalShape->slab_mesh.pmesh =
// &(m_pThreeDimensionalShape->input);
slabMesh->type = 1;
slabMesh->bound_weight = 1.0;
// m_pThreeDimensionalShape->slab_mesh.type = 1;
// m_pThreeDimensionalShape->slab_mesh.bound_weight = 1.0;
// m_pThreeDimensionalShape->LoadInputNMM(filename);
LoadInputNMM(input, slabMesh, maname);
std::cout << "import MA done." << std::endl;
// success = true;
// if (success) {
// m_pGLWidget->set3DShape(m_pThreeDimensionalShape);
// }
return true;
}
void LoadSlabMesh(SlabMesh* slabMesh) {
slabMesh->clear();
// long startt = clock();
// handle each face
for (unsigned i = 0; i < slabMesh->vertices.size(); i++) {
if (!slabMesh->vertices[i].first) continue;
SlabVertex sv = *slabMesh->vertices[i].second;
std::set<unsigned> fset = sv.faces_;
Vector4d C1(sv.sphere.center.X(), sv.sphere.center.Y(),
sv.sphere.center.Z(), sv.sphere.radius);
for (set<unsigned>::iterator si = fset.begin(); si != fset.end(); si++) {
SlabFace sf = *slabMesh->faces[*si].second;
if (sf.valid_st == false || sf.st[0].normal == Vector3d(0., 0., 0.) ||
sf.st[1].normal == Vector3d(0., 0., 0.))
continue;
Vector4d normal1(sf.st[0].normal.X(), sf.st[0].normal.Y(),
sf.st[0].normal.Z(), 1.0);
Vector4d normal2(sf.st[1].normal.X(), sf.st[1].normal.Y(),
sf.st[1].normal.Z(), 1.0);
// compute the matrix of A
Matrix4d temp_A1, temp_A2;
temp_A1.MakeTensorProduct(normal1, normal1);
temp_A2.MakeTensorProduct(normal2, normal2);
temp_A1 *= 2.0;
temp_A2 *= 2.0;
// compute the matrix of b
double normal_mul_point1 = normal1.Dot(C1);
double normal_mul_point2 = normal2.Dot(C1);
Wm4::Vector4d temp_b1 = normal1 * 2 * normal_mul_point1;
Wm4::Vector4d temp_b2 = normal2 * 2 * normal_mul_point2;
// compute c
double temp_c1 = normal_mul_point1 * normal_mul_point1;
double temp_c2 = normal_mul_point2 * normal_mul_point2;
slabMesh->vertices[i].second->slab_A += temp_A1;
slabMesh->vertices[i].second->slab_A += temp_A2;
slabMesh->vertices[i].second->slab_b += temp_b1;
slabMesh->vertices[i].second->slab_b += temp_b2;
slabMesh->vertices[i].second->slab_c += temp_c1;
slabMesh->vertices[i].second->slab_c += temp_c2;
slabMesh->vertices[i].second->related_face += 2;
}
}
switch (slabMesh->preserve_boundary_method) {
case 1:
slabMesh->PreservBoundaryMethodOne();
break;
case 2:
// slab_mesh.PreservBoundaryMethodTwo();
break;
case 3:
slabMesh->PreservBoundaryMethodThree();
break;
default:
slabMesh->PreservBoundaryMethodFour();
break;
}
slabMesh->initCollapseQueue();
// long endt = clock();
}
void openmeshfile(Mesh* input, SlabMesh* slabMesh, std::string filename,
std::string maname) {
// QString filename = QFileDialog::getOpenFileName(this, tr("Select a 3D model
// to open"), NULL, tr("3D model(*.off)"));
if (!filename.empty()) {
// QDir qd(filename);
std::string prefix = filename.substr(0, filename.size() - 4);
// ThreeDimensionalShape * pThreeDimensionalShape = new
// ThreeDimensionalShape;
bool suc = false;
std::ifstream stream(filename);
if (stream) {
stream >> *input;
// compute the properties of the input mesh
input->computebb(); // bounding box
input->GenerateList(); // generate vertex and triangle list
input->GenerateRandomColor(); // color of vertex and triangle
input->compute_normals(); // normal of vertex and triangle
// pThreeDimensionalShape->input_nmm.meshname = filename.;
std::ifstream streampol(filename);
Polyhedron pol;
streampol >> pol;
// set the non manifold mesh
// Mesh_domain * pdom;
// pdom = new Mesh_domain(pol);
suc = true;
}
if (suc) {
// m_pThreeDimensionalShape = pThreeDimensionalShape;
// //ui.actionShow_Edge->setChecked(true);
//
// ui.actionShow_Face->setChecked(true);
// ui.actionReverse_Orientation->setChecked(true);
// importVP(prefix);
bool re = importMA(input, slabMesh, maname);
if (re == false) return;
float k = 0.00001;
slabMesh->k = k;
// initialize();
slabMesh->preserve_boundary_method = 0;
slabMesh->hyperbolic_weight_type = 3;
slabMesh->compute_hausdorff = false;
slabMesh->boundary_compute_scale = 0;
slabMesh->prevent_inversion = false;
LoadSlabMesh(slabMesh);
// long ti = m_pThreeDimensionalShape->LoadSlabMesh();
// slab_initial = true;
// // set back
// ui.actionSet_k_value->setChecked(false);
//
// // show the input mesh in the dialog.
// m_pGLWidget->set3DShape(m_pThreeDimensionalShape);
// statusBar()->showMessage(filename + tr(" is loaded successfully.") );
// setWindowTitle( tr("Medial Axis Simplification 3D - ") + filename );
// m_isSimplified = false;
std::cout << "openmeshfile done." << std::endl;
} else {
}
} else {
std::cout << "Filename is empty !" << std::endl;
}
}
void simplifySlab(SlabMesh* slabMesh, Mesh* mesh, unsigned num_spheres) {
slabMesh->CleanIsolatedVertices();
// int threhold = min(10000, (int)(slabMesh->numVertices / 2));
int threhold = num_spheres;
// bool ok = true;
// int simplifyNum = min(10000, (int)(slabMesh->numVertices / 2));
// if (ok)
// threhold = simplifyNum;
// else
// return;
// if(slabMesh == NULL)
// return;
// long start_time = clock();
// slabMesh->initCollapseQueue();
// slabMesh->initBoundaryCollapseQueue();
slabMesh->Simplify(slabMesh->numVertices - threhold);
// long end_time = clock();
//
// std::string res;
// std::stringstream ss;
// ss << end_time - start_time;
// ss >> res;
slabMesh->ComputeFacesNormal();
slabMesh->ComputeVerticesNormal();
slabMesh->ComputeEdgesCone();
slabMesh->ComputeFacesSimpleTriangles();
std::cout << "Simplify done." << std::endl;
}
int main(int argc, char** argv) {
if (4 > argc) {
std::cerr << "Usage: " << argv[0]
<< " <surface_mesh.off> <medial_mesh.ma> <num_target_spheres>"
<< std::endl;
return 1;
}
std::string filename = argv[1];
std::string maname = argv[2];
unsigned num_spheres = atoi(argv[3]);
printf("reading off file %s\n", filename.c_str());
Mesh input;
Mesh* pinput = &input;
SlabMesh slabMesh;
SlabMesh* pslabMesh = &slabMesh;
openmeshfile(pinput, pslabMesh, filename, maname);
printf("done openmeshfile\n");
simplifySlab(pslabMesh, pinput, num_spheres);
printf("done simplifyslab\n");
pslabMesh->Export("export_half", pinput);
printf("done export\n");
return 0;
}