forked from CyberPunkMetalHead/Binance-News-Sentiment-Bot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnews-analysis.py
488 lines (358 loc) · 16.2 KB
/
news-analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# import for environment variables and waiting
import os, time
# used to parse XML feeds
import xml.etree.ElementTree as ET
# we use it to make async http requests
import aiohttp
# allows us to make our functions async
import asyncio
# date modules that we'll most likely need
from datetime import date, datetime, timedelta
# used to grab the XML url list from a CSV file
import csv
# numpy for sums and means
import numpy as np
# nlp library to analyse sentiment
import nltk
import pytz
from nltk.sentiment import SentimentIntensityAnalyzer
# needed for the binance API
from binance.client import Client
from binance.enums import *
from binance.exceptions import BinanceAPIException, BinanceOrderException
# used for binance websocket
from binance.websockets import BinanceSocketManager
from twisted.internet import reactor
# used for executing the code
from itertools import count
# we use it to time our parser execution speed
from timeit import default_timer as timer
# Use testnet (change to True) or live (change to False)?
testnet = True
# get binance key and secret from environment variables for testnet and live
api_key_test = os.getenv('binance_api_stalkbot_testnet')
api_secret_test = os.getenv('binance_secret_stalkbot_testnet')
api_key_live = os.getenv('binance_api_stalkbot_live')
api_secret_live = os.getenv('binance_secret_stalkbot_live')
# Authenticate with the client
if testnet:
client = Client(api_key_test, api_secret_test)
else:
client = Client(api_key_live, api_secret_live)
# The API URL is manually changed in the library to work on the testnet
if testnet:
client.API_URL = 'https://testnet.binance.vision/api'
############################################
# USER INPUT VARIABLES LIVE BELOW #
# You may edit those to configure your bot #
############################################
# select what coins to look for as keywords in articles headlines
# The key of each dict MUST be the symbol used for that coin on Binance
# Use each list to define keywords separated by commas: 'XRP': ['ripple', 'xrp']
# keywords are case sensitive
keywords = {
'XRP': ['ripple', 'xrp', 'XRP', 'Ripple', 'RIPPLE'],
'BTC': ['BTC', 'bitcoin', 'Bitcoin', 'BITCOIN'],
'XLM': ['Stellar Lumens', 'XLM'],
#'BCH': ['Bitcoin Cash', 'BCH'],
'ETH': ['ETH', 'Ethereum'],
'BNB' : ['BNB', 'Binance Coin'],
'LTC': ['LTC', 'Litecoin']
}
# The Buy amount in the PAIRING symbol, by default USDT
# 100 will for example buy the equivalent of 100 USDT in Bitcoin.
QUANTITY = 100
# define what to pair each coin to
# AVOID PAIRING WITH ONE OF THE COINS USED IN KEYWORDS
PAIRING = 'USDT'
# define how positive the news should be in order to place a trade
# the number is a compound of neg, neu and pos values from the nltk analysis
# input a number between -1 and 1
SENTIMENT_THRESHOLD = 0
NEGATIVE_SENTIMENT_THRESHOLD = 0
# define the minimum number of articles that need to be analysed in order
# for the sentiment analysis to qualify for a trade signal
# avoid using 1 as that's not representative of the overall sentiment
MINUMUM_ARTICLES = 1
# define how often to run the code (check for new + try to place trades)
# in minutes
REPEAT_EVERY = 60
# define how old an article can be to be included
# in hours
HOURS_PAST = 24
############################################
# END OF USER INPUT VARIABLES #
# Edit with care #
############################################
# coins that bought by the bot since its start
coins_in_hand = {}
# initializing the volumes at hand
for coin in keywords:
coins_in_hand[coin] = 0
# current price of CRYPTO pulled through the websocket
CURRENT_PRICE = {}
def ticker_socket(msg):
'''Open a stream for financial information for CRYPTO'''
if msg['e'] != 'error':
global CURRENT_PRICE
CURRENT_PRICE['{0}'.format(msg['s'])] = msg['c']
else:
print('error')
# connect to the websocket client and start the socket
bsm = BinanceSocketManager(client)
for coin in keywords:
conn_key = bsm.start_symbol_ticker_socket(coin+PAIRING, ticker_socket)
bsm.start()
'''For the amount of CRYPTO to trade in USDT'''
lot_size = {}
'''Find step size for each coin
For example, BTC supports a volume accuracy of
0.000001, while XRP only 0.1
'''
for coin in keywords:
try:
info = client.get_symbol_info(coin+PAIRING)
step_size = info['filters'][2]['stepSize']
lot_size[coin+PAIRING] = step_size.index('1') - 1
if lot_size[coin+PAIRING]<0:
lot_size[coin+PAIRING]=0
except:
pass
for coin in keywords:
try:
info = client.get_symbol_info(coin)
step_size = info['filters'][2]['stepSize']
lot_size[coin] = step_size.index('1') - 1
if lot_size[coin]<0:
lot_size[coin]=0
except:
pass
def calculate_one_volume_from_lot_size(coin, amount):
if coin not in lot_size:
return float('{:.1f}'.format(amount))
else:
return float('{:.{}f}'.format(amount, lot_size[coin]))
def calculate_volume():
while CURRENT_PRICE == {}:
print('Connecting to the socket...')
time.sleep(3)
else:
volume = {}
for coin in CURRENT_PRICE:
volume[coin] = float(QUANTITY / float(CURRENT_PRICE[coin]))
volume[coin] = calculate_one_volume_from_lot_size(coin, volume[coin])
return volume
# load the csv file containg top 100 crypto feeds
# want to scan other websites?
# Simply add the RSS Feed url to the Crypto feeds.csv file
with open('Crypto feeds.csv') as csv_file:
# open the file
csv_reader = csv.reader(csv_file)
# remove any headers
next(csv_reader, None)
# create empty list
feeds = []
# add each row cotaining RSS url to feeds list
for row in csv_reader:
feeds.append(row[0])
# Make headlines global variable as it should be the same across all functions
headlines = {'source': [], 'title': [], 'pubDate' : [] }
async def get_feed_data(session, feed, headers):
'''
Get relevent data from rss feed, in async fashion
:param feed: The name of the feed we want to fetch
:param headers: The header we want on the request
:param timeout: The default timout before we give up and move on
:return: None, we don't need to return anything we append it all on the headlines dict
'''
try:
async with session.get(feed, headers=headers, timeout=60) as response:
# define the root for our parsing
text = await response.text()
root = ET.fromstring(text)
channel = root.find('channel/item/title').text
pubDate = root.find('channel/item/pubDate').text
# some jank to ensure no alien characters are being passed
title = channel.encode('UTF-8').decode('UTF-8')
# convert pubDat to datetime
published = datetime.strptime(pubDate.replace("GMT", "+0000"), '%a, %d %b %Y %H:%M:%S %z')
# calculate timedelta
time_between = datetime.now(pytz.utc) - published
#print(f'Czas: {time_between.total_seconds() / (60 * 60)}')
if time_between.total_seconds() / (60 * 60) <= HOURS_PAST:
# append the source
headlines['source'].append(feed)
# append the publication date
headlines['pubDate'].append(pubDate)
# append the title
headlines['title'].append(title)
print(channel)
except Exception as e:
# Catch any error and also print it
print(f'Could not parse {feed} error is: {e}')
async def get_headlines():
'''
Creates a an async task for each of our feeds which are appended to headlines
:return: None
'''
# add headers to the request for ElementTree. Parsing issues occur without headers
headers = {
'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:87.0) Gecko/20100101 Firefox/87.0'
}
# A nifty timer to see how long it takes to parse all the feeds
start = timer()
async with aiohttp.ClientSession() as session:
tasks = []
for feed in feeds:
task = asyncio.ensure_future(get_feed_data(session, feed, headers))
tasks.append(task)
# This makes sure we finish all tasks/requests before we continue executing our code
await asyncio.gather(*tasks)
end = timer()
print("Time it took to parse feeds: ", end - start)
def categorise_headlines():
'''arrange all headlines scaped in a dictionary matching the coin's name'''
# get the headlines
asyncio.run(get_headlines())
categorised_headlines = {}
# this loop will create a dictionary for each keyword defined
for keyword in keywords:
categorised_headlines['{0}'.format(keyword)] = []
# keyword needs to be a loop in order to be able to append headline to the correct dictionary
for keyword in keywords:
# looping through each headline is required as well
for headline in headlines['title']:
# appends the headline containing the keyword to the correct dictionary
if any(key in headline for key in keywords[keyword]):
categorised_headlines[keyword].append(headline)
return categorised_headlines
def analyse_headlines():
'''Analyse categorised headlines and return NLP scores'''
sia = SentimentIntensityAnalyzer()
categorised_headlines = categorise_headlines()
sentiment = {}
for coin in categorised_headlines:
if len(categorised_headlines[coin]) > 0:
# create dict for each coin
sentiment['{0}'.format(coin)] = []
# append sentiment to dict
for title in categorised_headlines[coin]:
sentiment[coin].append(sia.polarity_scores(title))
return sentiment
def compile_sentiment():
'''Arranges every compound value into a list for each coin'''
sentiment = analyse_headlines()
compiled_sentiment = {}
for coin in sentiment:
compiled_sentiment[coin] = []
for item in sentiment[coin]:
# append each compound value to each coin's dict
compiled_sentiment[coin].append(sentiment[coin][sentiment[coin].index(item)]['compound'])
return compiled_sentiment
def compound_average():
'''Calculates and returns the average compoud sentiment for each coin'''
compiled_sentiment = compile_sentiment()
headlines_analysed = {}
for coin in compiled_sentiment:
headlines_analysed[coin] = len(compiled_sentiment[coin])
# calculate the average using numpy if there is more than 1 element in list
compiled_sentiment[coin] = np.array(compiled_sentiment[coin])
# get the mean
compiled_sentiment[coin] = np.mean(compiled_sentiment[coin])
# convert to scalar
compiled_sentiment[coin] = compiled_sentiment[coin].item()
return compiled_sentiment, headlines_analysed
def buy(compiled_sentiment, headlines_analysed):
'''Check if the sentiment is positive and keyword is found for each handle'''
volume = calculate_volume()
for coin in compiled_sentiment:
# check if the sentiment and number of articles are over the given threshold
if compiled_sentiment[coin] > SENTIMENT_THRESHOLD and headlines_analysed[coin] >= MINUMUM_ARTICLES and coins_in_hand[coin]==0:
# check the volume looks correct
print(f'preparing to buy {volume[coin+PAIRING]} {coin} with {PAIRING} at {CURRENT_PRICE[coin+PAIRING]}')
if (testnet):
# create test order before pushing an actual order
test_order = client.create_test_order(symbol=coin+PAIRING, side='BUY', type='MARKET', quantity=volume[coin+PAIRING])
# try to create a real order if the test orders did not raise an exception
try:
buy_limit = client.create_order(
symbol=coin+PAIRING,
side='BUY',
type='MARKET',
quantity=volume[coin+PAIRING]
)
#error handling here in case position cannot be placed
except Exception as e:
print(e)
# run the else block if the position has been placed and return some info
else:
# adds coin to our portfolio
coins_in_hand[coin] += volume[coin+PAIRING]
# retrieve the last order
order = client.get_all_orders(symbol=coin+PAIRING, limit=1)
if order:
# convert order timsestamp into UTC format
time = order[0]['time'] / 1000
utc_time = datetime.fromtimestamp(time)
# grab the price of CRYPTO the order was placed at for reporting
bought_at = CURRENT_PRICE[coin+PAIRING]
# print order condirmation to the console
print(f"order {order[0]['orderId']} has been placed on {coin} with {order[0]['origQty']} at {utc_time} and bought at {bought_at}")
else:
print('Could not get last order from Binance!')
else:
print(f'Sentiment not positive enough for {coin}, or not enough headlines analysed or already bought: {compiled_sentiment[coin]}, {headlines_analysed[coin]}')
def sell(compiled_sentiment, headlines_analysed):
'''Check if the sentiment is negative and keyword is found for each handle'''
for coin in compiled_sentiment:
# check if the sentiment and number of articles are over the given threshold
if compiled_sentiment[coin] < NEGATIVE_SENTIMENT_THRESHOLD and headlines_analysed[coin] >= MINUMUM_ARTICLES and coins_in_hand[coin]>0:
# check the volume looks correct
print(f'preparing to sell {coins_in_hand[coin]} {coin} at {CURRENT_PRICE[coin+PAIRING]}')
amount_to_sell = calculate_one_volume_from_lot_size(coin+PAIRING, coins_in_hand[coin]*99.5/100)
if (testnet):
# create test order before pushing an actual order
test_order = client.create_test_order(symbol=coin+PAIRING, side='SELL', type='MARKET', quantity=amount_to_sell)
# try to create a real order if the test orders did not raise an exception
try:
buy_limit = client.create_order(
symbol=coin+PAIRING,
side='SELL',
type='MARKET',
quantity=amount_to_sell
)
#error handling here in case position cannot be placed
except Exception as e:
print(e)
# run the else block if the position has been placed and return some info
else:
# set coin to 0
coins_in_hand[coin]=0
# retrieve the last order
order = client.get_all_orders(symbol=coin+PAIRING, limit=1)
if order:
# convert order timsestamp into UTC format
time = order[0]['time'] / 1000
utc_time = datetime.fromtimestamp(time)
# grab the price of CRYPTO the order was placed at for reporting
sold_at = CURRENT_PRICE[coin+PAIRING]
# print order condirmation to the console
print(f"order {order[0]['orderId']} has been placed on {coin} with {order[0]['origQty']} coins sold for {sold_at} each at {utc_time}")
else:
print('Could not get last order from Binance!')
else:
print(f'Sentiment not negative enough for {coin}, not enough headlines analysed or not enough {coin} to sell: {compiled_sentiment[coin]}, {headlines_analysed[coin]}')
if __name__ == '__main__':
print('Press Ctrl-Q to stop the script')
for i in count():
compiled_sentiment, headlines_analysed = compound_average()
print("\nBUY CHECKS:")
buy(compiled_sentiment, headlines_analysed)
print("\nSELL CHECKS:")
sell(compiled_sentiment, headlines_analysed)
print('\nCurrent bot holdings: ')
for coin in coins_in_hand:
if coins_in_hand[coin] > 0:
print(f'{coin}: {coins_in_hand[coin]}')
print(f'\nIteration {i}')
time.sleep(60 * REPEAT_EVERY)