-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathworldranking.py
154 lines (121 loc) · 5.18 KB
/
worldranking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import requests
from bs4 import BeautifulSoup
import pandas as pd
import io
import argparse
import os
import re
import sys
import urllib.parse
def parse_venue(venue):
venue = venue.strip()
parts = venue.split(', ')
if len(parts) == 1:
city, country = parse_country_and_city(parts[0])
return pd.Series({'country': country, 'city': city, 'stadium': None})
stadium = parts[0]
rest = ', '.join(parts[1:])
city, country = parse_country_and_city(rest)
return pd.Series({'country': country, 'city': city, 'stadium': stadium})
def parse_country_and_city(country_and_city):
regex = re.compile(r'(.+?)\s*\((\w+(?:\s+\w+)*)\)')
match_result = regex.match(country_and_city)
if not match_result:
raise ValueError(
f"Cannot parse country and city from {country_and_city}")
city = match_result.group(1)
country = match_result.group(2)
return city, country
def get_url_params(ageCategory, regionType, region, limitByCountry):
url_params = f'?regionType={regionType}&ageCategory={ageCategory}'
if region and ' ' in region and regionType != 'world':
region = urllib.parse.quote(region)
if region != None and regionType != 'world':
url_params += f'®ion={region}'
if limitByCountry != None:
url_params += f'&maxResultsByCountry={limitByCountry}'
return url_params
def get_url(type, discipline, sex, ageCategory, year, regionType, region, limitByCountry=None):
url = f'https://worldathletics.org/records/toplists/{type}/{discipline}/all/{sex}/{ageCategory}/{year}'
url += get_url_params(ageCategory, regionType, region, limitByCountry)
return url
def download_parse(url, discipline, sex, regionType, region):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
table = soup.find('table', class_='records-table')
if (table == None):
return None
df = pd.read_html(io.StringIO(str(table)))[0]
df = df.dropna(axis=1, how='all')
df["Discipline"] = discipline
if sex == "mixed":
df["Sex"] = "Mixed"
elif sex == "men":
df["Sex"] = "Male"
else:
df["Sex"] = "Female"
df['Date'] = pd.to_datetime(df['Date'], format='%d %b %Y')
if regionType == "countries":
df["Record Type"] = "NL"
elif regionType == "area":
df["Record Type"] = "AL"
elif regionType == "world":
df["Record Type"] = "WL"
# Staffeln haben kein DOB
if 'DOB' in df.columns:
df['DOB'] = pd.to_datetime(
df['DOB'], format='%d %b %Y', errors='coerce')
df["YOB"] = df['DOB'].dt.year
if (region != None):
df["Region"] = region
df[['Country', 'City', 'Stadium']] = df['Venue'].apply(parse_venue)
df["Environment"] = df["Venue"].apply(
lambda x: "Indoor" if "(i)" in x else "Outdoor")
df = df.drop(columns=['Results Score',
'RegionType', 'DOB', 'Pos'], errors='ignore')
df = df.rename(columns={
'City': 'Venue City', 'Country': 'Venue Country', 'Mark': 'Result', 'Nat': 'Nation', 'WIND': 'Wind', 'Competitor': 'Name'})
df['Venue'] = df['Venue'].apply(lambda x: x.split(' (', 1)[0])
df['Venue'] = df['Venue'].apply(lambda x: x.split(', ', 1)[0])
df['Venue'] = df['Venue'].apply(lambda x: x.strip())
return df
if __name__ == "__main__":
argparse = argparse.ArgumentParser()
argparse.add_argument("--type", help="Type of discipline", choices=[
"sprints", "middlelong", "jumps", "throws", "road-running", "race-walks", "hurdles", "relays"], required=True)
argparse.add_argument("--discipline", help="Discipline", required=True)
argparse.add_argument(
"--sex", choices=["women", "men", "mixed"], required=True)
argparse.add_argument(
"--ageCategory", choices=["u18", "u20", "senior", "all"], required=True)
argparse.add_argument("--year", help="Year", required=True)
argparse.add_argument(
"--regionType", choices=["world", "area", "countries"], default="world")
argparse.add_argument("--region", help="Region", required=False)
argparse.add_argument("--output", help="Output file", required=False)
argparse.add_argument("--limitByCountry", help="Limit by country",
required=False, choices=[1, 2, 3, 4, 5], type=int)
args = argparse.parse_args()
if args.regionType in ["area", "country"] and args.region is None:
argparse.error(
"--region is required when --regionType is 'area' or 'country'")
type = args.type
discipline = args.discipline
sex = args.sex
ageCategory = args.ageCategory
year = args.year
regionType = args.regionType
region = args.region
limitByCountry = args.limitByCountry
url = get_url(type, discipline, sex, ageCategory,
year, regionType, region, limitByCountry)
print(url)
df = download_parse(url, discipline, sex, regionType, region)
if df is None:
print("No data found")
sys.exit(1)
if args.output:
output_dir = os.path.dirname(args.output)
if not os.path.exists(output_dir):
os.makedirs(output_dir, exist_ok=True)
df.to_csv(args.output, index=False)