From 1ed2854bcf0869a0f88f455d36ad887523fc08f6 Mon Sep 17 00:00:00 2001 From: Nikhil Barhate Date: Sun, 28 Jul 2019 12:26:43 +0530 Subject: [PATCH] bipedal walker update --- PPO_continuous.py | 52 +++++++++++++++++++++++------------------------ 1 file changed, 25 insertions(+), 27 deletions(-) diff --git a/PPO_continuous.py b/PPO_continuous.py index 9db14fd..e76c09c 100644 --- a/PPO_continuous.py +++ b/PPO_continuous.py @@ -20,24 +20,24 @@ def clear_memory(self): del self.rewards[:] class ActorCritic(nn.Module): - def __init__(self, state_dim, action_dim, n_var, action_std): + def __init__(self, state_dim, action_dim, action_std): super(ActorCritic, self).__init__() # action mean range -1 to 1 self.actor = nn.Sequential( - nn.Linear(state_dim, n_var), + nn.Linear(state_dim, 64), nn.Tanh(), - nn.Linear(n_var, n_var), + nn.Linear(64, 32), nn.Tanh(), - nn.Linear(n_var, action_dim), + nn.Linear(32, action_dim), nn.Tanh() ) # critic self.critic = nn.Sequential( - nn.Linear(state_dim, n_var), + nn.Linear(state_dim, 64), nn.Tanh(), - nn.Linear(n_var, n_var), + nn.Linear(64, 32), nn.Tanh(), - nn.Linear(n_var, 1) + nn.Linear(32, 1) ) self.action_var = torch.full((action_dim,), action_std*action_std).to(device) @@ -73,17 +73,16 @@ def evaluate(self, state, action): return action_logprobs, torch.squeeze(state_value), dist_entropy class PPO: - def __init__(self, state_dim, action_dim, n_latent_var, action_std, lr, betas, gamma, K_epochs, eps_clip): + def __init__(self, state_dim, action_dim, action_std, lr, betas, gamma, K_epochs, eps_clip): self.lr = lr self.betas = betas self.gamma = gamma self.eps_clip = eps_clip self.K_epochs = K_epochs - self.policy = ActorCritic(state_dim, action_dim, n_latent_var, action_std).to(device) - self.optimizer = torch.optim.Adam(self.policy.parameters(), - lr=lr, betas=betas) - self.policy_old = ActorCritic(state_dim, action_dim, n_latent_var, action_std).to(device) + self.policy = ActorCritic(state_dim, action_dim, action_std).to(device) + self.optimizer = torch.optim.Adam(self.policy.parameters(), lr=lr, betas=betas) + self.policy_old = ActorCritic(state_dim, action_dim, action_std).to(device) self.MseLoss = nn.MSELoss() @@ -132,21 +131,20 @@ def update(self, memory): def main(): ############## Hyperparameters ############## - env_name = "LunarLanderContinuous-v2" + env_name = "BipedalWalker-v2" render = False - solved_reward = 200 # stop training if avg_reward > solved_reward + solved_reward = 300 # stop training if avg_reward > solved_reward log_interval = 20 # print avg reward in the interval max_episodes = 10000 # max training episodes - max_timesteps = 500 # max timesteps in one episode + max_timesteps = 1500 # max timesteps in one episode update_timestep = 4000 # update policy every n timesteps - action_std = 0.8 # constant std for action distribution (Multivariate Normal) - K_epochs = 100 # update policy for K epochs + action_std = 0.5 # constant std for action distribution (Multivariate Normal) + K_epochs = 80 # update policy for K epochs eps_clip = 0.2 # clip parameter for PPO gamma = 0.99 # discount factor - n_latent_var = 64 # number of variables in hidden layer - lr = 0.00025 # parameters for Adam optimizer + lr = 0.0003 # parameters for Adam optimizer betas = (0.9, 0.999) random_seed = None @@ -164,7 +162,7 @@ def main(): np.random.seed(random_seed) memory = Memory() - ppo = PPO(state_dim, action_dim, n_latent_var, action_std, lr, betas, gamma, K_epochs, eps_clip) + ppo = PPO(state_dim, action_dim, action_std, lr, betas, gamma, K_epochs, eps_clip) print(lr,betas) # logging variables @@ -196,11 +194,16 @@ def main(): avg_length += t - # # stop training if avg_reward > solved_reward + # stop training if avg_reward > solved_reward if running_reward > (log_interval*solved_reward): print("########## Solved! ##########") - torch.save(ppo.policy.state_dict(), './PPO_Continuous_{}.pth'.format(env_name)) + torch.save(ppo.policy.state_dict(), './PPO_continuous_solved_{}.pth'.format(env_name)) break + + # save every 500 episodes + if i_episode % 500 == 0: + torch.save(ppo.policy.state_dict(), './PPO_continuous_{}.pth'.format(env_name)) + # logging if i_episode % log_interval == 0: avg_length = int(avg_length/log_interval) @@ -213,8 +216,3 @@ def main(): if __name__ == '__main__': main() - - - - -