Skip to content

Commit 08df450

Browse files
authored
Update readme.md
1 parent cf907e5 commit 08df450

File tree

1 file changed

+18
-7
lines changed

1 file changed

+18
-7
lines changed

readme.md

Lines changed: 18 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -293,16 +293,27 @@ drive.mount('/content/drive')
293293
| [`Matplotlib_Seaborn.ipynb`](Matplotlib_Seaborn.ipynb) | Advanced statistical plots with Seaborn | 4-5 hours | Matplotlib basics |
294294
| [`Boxplot.ipynb`](Boxplot.ipynb) | Box plot analysis and statistical interpretation | 2-3 hours | Basic statistics |
295295

296+
---
297+
296298
### 🤖 **Machine Learning**
299+
297300
*⏱️ Learning Time: 25-30 hours | 🎯 Difficulty: Intermediate*
298301

299-
| Notebook/File | Description | Duration | Prerequisites |
300-
|---------------|-------------|----------|---------------|
301-
| [`Scikit_Learn_Machine_Learning_in_Python_.ipynb`](Scikit_Learn_Machine_Learning_in_Python_.ipynb) | Complete Scikit-Learn tutorial and algorithms | 6-8 hours | Data Science stack |
302-
| [`hello_world_of_ML.ipynb`](hello_world_of_ML.ipynb) | Introduction to ML concepts and workflow | 2-3 hours | Basic statistics |
303-
| [`Classification_using_Supervised_Learning_Models.ipynb`](Classification_using_Supervised_Learning_Models.ipynb) | Supervised learning classification models | 4-5 hours | ML basics |
304-
| [`Distribute_Datasets_for_Classification_Models.ipynb`](Distribute_Datasets_for_Classification_Models.ipynb) | Handling class imbalance in classification | 3-4 hours | Classification |
305-
| [`dataset_distribution_in_classification_models.ipynb`](dataset_distribution_in_classification_models.ipynb) | Dataset distribution analysis and techniques | 2-3 hours | Statistics, ML |
302+
| Notebook/File | Description | Duration | Prerequisites |
303+
| ---------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------ | --------- | ---------------------- |
304+
| [`Scikit_Learn_Machine_Learning_in_Python_.ipynb`](Scikit_Learn_Machine_Learning_in_Python_.ipynb) | Complete Scikit-Learn tutorial and algorithms | 6-8 hours | Data Science stack |
305+
| [`hello_world_of_ML.ipynb`](hello_world_of_ML.ipynb) | Introduction to ML concepts and workflow | 2-3 hours | Basic statistics |
306+
| [`Classification_using_Supervised_Learning_Models.ipynb`](Classification_using_Supervised_Learning_Models.ipynb) | Supervised learning classification models | 4-5 hours | ML basics |
307+
| [`Distribute_Datasets_for_Classification_Models.ipynb`](Distribute_Datasets_for_Classification_Models.ipynb) | Handling class imbalance in classification | 3-4 hours | Classification |
308+
| [`dataset_distribution_in_classification_models.ipynb`](dataset_distribution_in_classification_models.ipynb) | Dataset distribution analysis and techniques | 2-3 hours | Statistics, ML |
309+
| [`scaling.md`](scaling.md) | Guide on feature scaling techniques and best practices | 30-40 min | Basic ML knowledge |
310+
| [`slicing.md`](slicing.md) | How to slice datasets efficiently for ML workflows | 20-30 min | Python basics |
311+
| \[`Logistic Regression vs. Linear Regression.md`]\(Logistic Regression vs. Linear Regression.md) | Differences, use cases, and examples | 20-30 min | Statistics, Regression |
312+
| \[`Encoding in Machine Learning.md`]\(Encoding in Machine Learning.md) | Categorical variable encoding techniques | 20-30 min | Python, ML basics |
313+
| [`DataCleaningGuide.md`](DataCleaningGuide.md) | Data preprocessing and cleaning techniques | 40-50 min | Python, Pandas |
314+
| [`MODEL_SELECTION_GUIDE.md`](MODEL_SELECTION_GUIDE.md) | Guide on selecting the right ML model | 40-50 min | ML basics |
315+
316+
---
306317

307318
### 📊 **Real-World ML Projects**
308319
*⏱️ Learning Time: 20-25 hours | 🎯 Difficulty: Intermediate to Advanced*

0 commit comments

Comments
 (0)