-
Notifications
You must be signed in to change notification settings - Fork 23
/
meshify_simplify_quadric.pas
627 lines (598 loc) · 20.7 KB
/
meshify_simplify_quadric.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
unit meshify_simplify_quadric;
{$mode objfpc}{$H+}
interface
//Mesh Simplification Unit
// (C) by Sven Forstmann in 2014
//License : MIT (http://opensource.org/licenses/MIT)
// https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification
// http://www.gamedev.net/topic/656486-high-speed-quadric-mesh-simplification-without-problems-resolved/
// http://voxels.blogspot.com/2014/05/quadric-mesh-simplification-with-source.html
// https://github.com/neurolabusc/Fast-Quadric-Mesh-Simplification-Pascal-
//5/2016: Chris Rorden ported from C++ to FreePascal/Delphi
uses
Math, define_types;
procedure simplify_mesh(var faces : TFaces; var verts: TVertices; target_count: integer; aggressiveness : double=7; resize: boolean=true);
// target_count : target nr. of triangles
// aggressiveness : sharpness to increase the threshold.
// 5..8 are good numbers
// more iterations yield higher quality
// resize : scale to unit size before decimation, rescale to original size after (helps threshold)
procedure simplify_mesh_lossless(var faces : TFaces; var verts: TVertices);
implementation
type
TFloat = double; //"TFloat = single" is faster "TFloat = double" more precise
//double recommended - especially for lossless which can fail to detect small differences (e.g. knot.mz3)
TSymetricMatrix = array [0..9] of TFloat;
TRef = record
tid,tvertex: integer;
end;
TVertex = record
p: TPoint3f;
border, tstart,tcount: integer;
q: TSymetricMatrix;
end;
TTriangle = record
v: array[0..2] of integer;
err: array[0..3] of TFloat;
dirty, deleted: boolean;
n: TPoint3f;
end;
TBools = array of boolean;
TVs = array of TVertex;
TTs = array of TTriangle;
TRs = array of TRef;
function symMat(c: TFloat): TSymetricMatrix; inline; overload;
var
i: integer;
begin
for i := 0 to 9 do
result[i] := c;
end; // symMat()
function symMat(a,b,c,d: TFloat): TSymetricMatrix; inline; overload;
begin
result[0] := a*a; result[1] := a*b; result[2] := a*c; result[3] := a*d;
result[4] := b*b; result[5] := b*c; result[6] := b*d;
result[7] :=c*c; result[8] := c*d;
result[9] := d*d;
end; // symMat()
function symMat( m11, m12, m13, m14, m22, m23, m24, m33, m34, m44: TFloat): TSymetricMatrix; inline; overload;
begin
result[0] := m11; result[1] := m12; result[2] := m13; result[3] := m14;
result[4] := m22; result[5] := m23; result[6] := m24;
result[7] := m33; result[8] := m34;
result[9] := m44;
end; // symMat()
function symMatAdd(n,m: TSymetricMatrix): TSymetricMatrix; inline;
begin
result := symMat(n[0]+m[0], n[1]+m[1], n[2]+m[2], n[3]+m[3], n[4]+m[4],
n[5]+m[5], n[6]+m[6], n[7]+m[7], n[8]+m[8], n[9]+m[9]);
end; // symMatAdd()
function symMatDet(m: TSymetricMatrix; a11, a12, a13, a21, a22, a23, a31, a32, a33: integer): TFloat; inline;
begin
result := m[a11]*m[a22]*m[a33] + m[a13]*m[a21]*m[a32] + m[a12]*m[a23]*m[a31]
- m[a13]*m[a22]*m[a31] - m[a11]*m[a23]*m[a32]- m[a12]*m[a21]*m[a33];
end; // symMatDet()
function ptf(x,y,z: single):TPoint3f;
begin
result.x := x;
result.y := y;
result.z := z;
end; // ptf()
function vCross(v1, v2: TPoint3f): TPoint3f; inline;
begin
result := ptf(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
end; // vCross()
function vSum(a,b: TPoint3f): TPoint3f; inline;
begin
result.X := a.X+b.X;
result.Y := a.Y+b.Y;
result.Z := a.Z+b.Z;
end; // vSum()
function vSubtract (a,b: TPoint3f): TPoint3f; inline;
begin
result.X := A.X - B.X;
result.Y := A.Y - B.Y;
result.Z := A.Z - B.Z;
end; // vSubtract()
procedure vNormalize(var v: TPoint3f); inline;
var
len: single;
begin
len := sqrt( (v.X*v.X) + (v.Y*v.Y) + (v.Z*v.Z) );
if len <= 0 then len := 0.0000001;
v.X := v.X / len;
v.Y := v.Y / len;
v.Z := v.Z / len;
end; // vNormalize()
function vDot (A, B: TPoint3f): single; inline;
begin //dot product
result := A.X*B.X + A.Y*B.Y + A.Z*B.Z;
end; // vDot()
function vMult(a: TPoint3f; v: TFloat):TPoint3f; inline;
begin
result.X := a.X*v;
result.Y := a.Y*v;
result.Z := a.Z*v;
end; // vMult()
// Error between vertex and Quadric
function vertex_error(q: TSymetricMatrix; x,y,z: TFloat): TFloat; inline;
begin
result := q[0]*x*x + 2*q[1]*x*y + 2*q[2]*x*z + 2*q[3]*x + q[4]*y*y
+ 2*q[5]*y*z + 2*q[6]*y + q[7]*z*z + 2*q[8]*z + q[9];
end; // vertex_error()
// Error for one edge
function calculate_error(id_v1, id_v2: integer; var p_result: TPoint3f; var vertices: TVs): TFloat; inline;
var
q : TSymetricMatrix;
border: integer;
error1,error2,error3,error, det: TFloat;
p1, p2, p3: TPoint3f;
begin
// compute interpolated vertex
q := symMatAdd(vertices[id_v1].q, vertices[id_v2].q);
border := vertices[id_v1].border + vertices[id_v2].border;
error := 0;
det := symMatDet(q, 0, 1, 2, 1, 4, 5, 2, 5, 7);
if ( det <> 0) and ( border = 0) then begin
// q_delta is invertible
p_result.x := -1/det*(symMatDet(q,1, 2, 3, 4, 5, 6, 5, 7 , 8)); // vx = A41/det(q_delta)
p_result.y := 1/det*(symMatDet(q,0, 2, 3, 1, 5, 6, 2, 7 , 8)); // vy = A42/det(q_delta)
p_result.z := -1/det*(symMatDet(q,0, 1, 3, 1, 4, 6, 2, 5, 8)); // vz = A43/det(q_delta)
error := vertex_error(q, p_result.x, p_result.y, p_result.z);
end else begin
// det = 0 -> try to find best result
p1 := vertices[id_v1].p;
p2 := vertices[id_v2].p;
p3 := vMult(vSum(p1, p2), 0.5);
error1 := vertex_error(q, p1.x,p1.y,p1.z);
error2 := vertex_error(q, p2.x,p2.y,p2.z);
error3 := vertex_error(q, p3.x,p3.y,p3.z);
error := min(error1, min(error2, error3));
if (error1 = error) then p_result := p1;
if (error2 = error) then p_result := p2;
if (error3 = error) then p_result := p3;
end;
result := error;
end; // calculate_error()
procedure update_mesh(iteration: integer; var triangles: TTs; var vertices: TVs; var refs :TRs; var nrefs: integer);
var
dst, i, j, k, tstart, ofs, id: integer;
t: ^Ttriangle;
v: ^TVertex;
p,n: TPoint3f;
p3 : array[0..2] of TPoint3f;
vcount,vids: array of integer;
begin
if(iteration>0) then begin // compact triangles
dst := 0;
for i := 0 to high(triangles) do begin
if(not triangles[i].deleted) then begin
triangles[dst] := triangles[i];
dst := dst + 1;
end; //if not deleted
end; //for each triangle
setlength(triangles, dst);
end; //if iteration > 0
//
// Init Quadrics by Plane & Edge Errors
//
// required at the beginning ( iteration == 0 )
// recomputing during the simplification is not required,
// but mostly improves the result for closed meshes
//
if( iteration = 0 ) then begin
for i := 0 to high(vertices) do
vertices[i].q := symMat(0.0);
for i := 0 to high(triangles) do begin
t := @triangles[i];
for j := 0 to 2 do
p3[j] := vertices[t^.v[j]].p;
p3[1] := vSubtract(p3[1],p3[0]);
p3[2] := vSubtract(p3[2],p3[0]);
n := vCross(p3[1], p3[2]);
vNormalize(n);
t^.n :=n;
for j := 0 to 2 do
vertices[t^.v[j]].q := symMatAdd(vertices[t^.v[j]].q, symMat(n.x,n.y,n.z,-vDot(n,p3[0])));
end; //for i: triangles
for i := 0 to high(triangles) do begin
// Calc Edge Error
t := @triangles[i];
p := ptf(0,0,0);
for j := 0 to 2 do
t^.err[j] := calculate_error(t^.v[j],t^.v[(j+1) mod 3] ,p, vertices);
t^.err[3] := min(t^.err[0],min(t^.err[1],t^.err[2]));
end; //for i: triangles
end; //if iteration = 0
// Init Reference ID list
for i := 0 to high(vertices) do begin
vertices[i].tstart := 0;
vertices[i].tcount := 0;
end;
for i := 0 to high(triangles) do
for j := 0 to 2 do
vertices[triangles[i].v[j]].tcount := vertices[triangles[i].v[j]].tcount + 1;
tstart := 0;
for i := 0 to high(vertices) do begin
vertices[i].tstart := tstart;
tstart := tstart + vertices[i].tcount;
vertices[i].tcount := 0;
end;
// Write References
// setlength(refs, length(triangles) * 3); //initial size, replicates C code
setlength(refs, length(triangles) * 6); //Pascal setlength() is expensive, so set larger than initially required to reduce re-allocation
nrefs := length(refs);
for i := 0 to high(triangles) do begin
t := @triangles[i];
for j := 0 to 2 do begin
v := @vertices[t^.v[j]];
refs[v^.tstart+v^.tcount].tid := i;
refs[v^.tstart+v^.tcount].tvertex := j;
v^.tcount := v^.tcount + 1;
end;
end; //for i: triangles
// Identify boundary : vertices[].border=0,1
if( iteration = 0 ) then begin
for i := 0 to high(vertices) do
vertices[i].border := 0;
for i := 0 to high(vertices) do begin
v := @vertices[i];
setlength(vcount, 0);
setlength(vids, 0);
for j := 0 to (v^.tcount -1) do begin
k := refs[v^.tstart+j].tid;
t := @triangles[k];
for k := 0 to 2 do begin
ofs := 0;
id := t^.v[k];
while ( ofs< length(vcount) ) do begin
if (vids[ofs] = id) then break;
ofs := ofs + 1;
end;
if(ofs = length(vcount)) then begin
setlength(vcount, length(vcount)+1);
vcount[high(vcount)] := 1;
setlength(vids, length(vids)+1);
vids[high(vids)] := id;
end else
vcount[ofs] := vcount[ofs] + 1;
end; // for k
end; //for j
for j := 0 to (length(vcount)-1) do
if vcount[j] = 1 then
vertices[vids[j]].border := 1;
end; //for i
end; // if iteration = 0
end; // update_mesh()
procedure compact_mesh(var triangles: TTs; var vertices: TVs);
// Finally compact mesh before exiting
var
dst, i, j: integer;
begin
dst := 0;
for i := 0 to high(vertices) do
vertices[i].tcount := 0;
for i := 0 to high(triangles) do begin
if (not triangles[i].deleted) then begin
triangles[dst] := triangles[i];
dst := dst + 1;
for j := 0 to 2 do
vertices[triangles[i].v[j]].tcount := 1;
end; //if not deleted
end; //for i
setlength(triangles, dst);
dst := 0;
for i := 0 to high(vertices) do begin
if vertices[i].tcount <> 0 then begin
vertices[i].tstart := dst;
vertices[dst].p := vertices[i].p;
dst := dst + 1;
end;
end; //for i
for i := 0 to high(triangles) do
for j := 0 to 2 do
triangles[i].v[j] := vertices[triangles[i].v[j]].tstart;
setlength(vertices, dst);
end; // compact_mesh()
function flipped(p: TPoint3f; i1: integer; var v0: TVertex; var deleted: TBools; var triangles: TTs; var vertices: TVs; var refs :TRs): boolean; inline;
var
k, bordercount, s, id1, id2: integer;
t: ^Ttriangle;
n, d1, d2: TPoint3f;
begin
bordercount := 0;
result := true;
for k := 0 to (v0.tcount -1) do begin
t := @triangles[refs[v0.tstart+k].tid];
if(t^.deleted) then continue;
s := refs[v0.tstart+k].tvertex;
id1 := t^.v[(s+1) mod 3];
id2 := t^.v[(s+2) mod 3];
if(id1=i1) or (id2=i1) then begin// delete ?
bordercount := bordercount + 1;
deleted[k] := true;
continue;
end;
d1 := vSubtract(vertices[id1].p, p);
vNormalize(d1);
d2 := vSubtract(vertices[id2].p, p);
vNormalize(d2);
if(abs(vDot(d1, d2))>0.999) then
exit;
n := vCross(d1, d2);
vNormalize(n);
deleted[k] := false;
if(vDot(n, t^.n)<0.2) then
exit;
end;
result := false;
end; // flipped()
procedure update_triangles(i0: integer; var v: TVertex; var deleted :TBools; var deleted_triangles: integer; var triangles: TTs; var vertices: TVs; var refs :TRs; var nrefs: integer); inline;
const
kBlockSz = 64000; //re-allocate memory in chunks
var
p: TPoint3f;
k: integer;
r: ^TRef;
t: ^TTriangle;
ref: TRef;
begin
p := ptf(0,0,0); //to hide compiler hint
for k := 0 to (v.tcount-1) do begin
r := @refs[v.tstart+k];
t := @triangles[r^.tid];
if(t^.deleted) then continue;
if (deleted[k]) then begin
t^.deleted := true;
deleted_triangles := deleted_triangles + 1;
continue;
end;
t^.v[r^.tvertex] := i0;
t^.dirty := true;
t^.err[0] := calculate_error(t^.v[0],t^.v[1],p, vertices);
t^.err[1] := calculate_error(t^.v[1],t^.v[2],p, vertices);
t^.err[2] := calculate_error(t^.v[2],t^.v[0],p, vertices);
t^.err[3] := min(t^.err[0],min(t^.err[1],t^.err[2]));
// setlength() is costly, so we do resize the array in chunks
ref := r^; //<- n.b. setlength() can change address of refs, so copy data to ref prior to resize!
if (nrefs >= length(refs)) then
setlength(refs, nrefs + kBlockSz);
refs[nrefs] := ref;
nrefs := nrefs + 1;
end;
end; // update_triangles()
procedure scale_mesh(var verts: TVertices; scale: TFloat);
var
i: integer;
begin
if scale = 1.0 then exit;
for i := 0 to high(verts) do
verts[i] := vMult(verts[i], scale);
end;
function normalize_mesh(var verts: TVertices): TFloat;
//make largest dimension have size of 1. Provides reasonable threshold
var
i: integer;
mn, mx: TPoint3f;
invert : TFloat;
begin
mn := verts[0];
mx := mn;
for i := 0 to high(verts) do begin
if (verts[i].X < mn.X) then mn.X := verts[i].X;
if (verts[i].Y < mn.Y) then mn.Y := verts[i].Y;
if (verts[i].Z < mn.Z) then mn.Z := verts[i].Z;
if (verts[i].X > mx.X) then mx.X := verts[i].X;
if (verts[i].Y > mx.Y) then mx.Y := verts[i].Y;
if (verts[i].Z > mx.Z) then mx.Z := verts[i].Z;
end;
result := max(max(mx.X-mn.X, mx.Y-mn.Y), mx.Z - mn.Z);
if (result = 0) or (result = 1.0) then exit;
invert := 1.0/result;
for i := 0 to high(verts) do
verts[i] := vMult(verts[i], invert);
end;
procedure simplify_mesh(var faces : TFaces; var verts: TVertices; target_count: integer; aggressiveness : double=7; resize: boolean=true);
var
vertices : TVs;
triangles : TTs;
iteration, i, j, deleted_triangles, triangle_count, i0, i1, tstart, tcount: integer;
deleted0,deleted1: TBools;
threshold: TFloat;
t: ^TTriangle;
v0, v1: ^TVertex;
p: TPoint3f;
refs : TRs;
nrefs: integer;
scale: TFloat = 1.0;
begin
if (length(faces) < 5) or (length(verts) < 5) or (target_count < 4) or (target_count > length(faces)) then exit;
if resize then
scale := normalize_mesh(verts);
//convert simple mesh to verbose structure that allows us to represent quadric properties
setlength(triangles, length(Faces));
setlength(vertices, length(Verts));
for i := 0 to high(triangles) do begin
triangles[i].v[0] := Faces[i].X;
triangles[i].v[1] := Faces[i].Y;
triangles[i].v[2] := Faces[i].Z;
end;
for i := 0 to high(verts) do
vertices[i].p := verts[i];
setlength(verts,0);
setlength(faces,0);
//now build mesh
setlength(refs,0); //to hide compiler hint
for i := 0 to high(triangles) do
triangles[i].deleted := false;
// main iteration loop
deleted_triangles := 0;
triangle_count := length(triangles);
for iteration := 0 to (100-1) do begin
// target number of triangles reached ? Then break
//printf("iteration %d - triangles %d\n",iteration,triangle_count-deleted_triangles);
if(triangle_count-deleted_triangles<=target_count) then break;
// update mesh once in a while
if(iteration mod 5 =0) then
update_mesh(iteration, triangles, vertices, refs, nrefs);
// clear dirty flag
for i := 0 to high(triangles) do
triangles[i].dirty := false;
// All triangles with edges below the threshold will be removed
// The following numbers works well for most models.
// If it does not, try to adjust the 3 parameters
threshold := 0.000000001*power(TFloat(iteration+3),aggressiveness);
// remove vertices & mark deleted triangles
for i := 0 to high(triangles) do begin
t := @triangles[i];
if (t^.err[3]>threshold) then continue;
if (t^.deleted) then continue;
if (t^.dirty) then continue;
for j := 0 to 2 do begin
if (t^.err[j]<threshold) then begin
i0 := t^.v[ j];
v0 := @vertices[i0];
i1 := t^.v[(j+1) mod 3];
v1 := @vertices[i1];
//https://github.com/sp4cerat/Fast-Quadric-Mesh-Simplification/issues/14
// Border check
//if (v0^.border <> v1^.border) then continue;
if (v0^.border > 0) or (v1^.border > 0) then continue;
// Compute vertex to collapse to
calculate_error(i0,i1,p, vertices);
setlength(deleted0, v0^.tcount);
setlength(deleted1, v1^.tcount);
// dont remove if flipped
if( flipped(p,i1,v0^,deleted0, triangles, vertices, refs) ) then continue;
if( flipped(p,i0,v1^,deleted1, triangles, vertices, refs) ) then continue;
// not flipped, so remove edge
v0^.p := p;
v0^.q := symMatAdd(v1^.q, v0^.q);
tstart := nrefs; //length(refs);
update_triangles(i0,v0^,deleted0,deleted_triangles, triangles, vertices, refs, nrefs);
update_triangles(i0,v1^,deleted1,deleted_triangles, triangles, vertices, refs, nrefs);
tcount := nrefs - tstart;//length(refs)-tstart;
if(tcount<=v0^.tcount) then begin // save ram
if (tcount > 0) then
move(refs[tstart], refs[v0^.tstart], tcount * sizeof(TRef)); //Move(src,dest,count);
end else // append
v0^.tstart := tstart;
v0^.tcount := tcount;
break;
end; //if <threshold
end; //loop j
// done?
if(triangle_count-deleted_triangles<=target_count) then break;
end;//for i :, each triangle
end; //for iteration
// clean up mesh
compact_mesh(triangles, vertices);
//now convert back to simple structure
setlength(Faces, length(triangles));
setlength(Verts, length(vertices));
for i := 0 to high(triangles) do begin
Faces[i].X := triangles[i].v[0];
Faces[i].Y := triangles[i].v[1];
Faces[i].Z := triangles[i].v[2];
end;
for i := 0 to high(verts) do
verts[i] := vertices[i].p;
if resize then
scale_mesh(verts, scale);
end; // simplify_mesh()
procedure simplify_mesh_lossless(var faces : TFaces; var verts: TVertices);
var
vertices : TVs;
triangles : TTs;
iteration, i, j, deleted_triangles, i0, i1, tstart, tcount: integer;
deleted0,deleted1: TBools;
t: ^TTriangle;
v0, v1: ^TVertex;
p: TPoint3f;
refs : TRs;
nrefs: integer;
begin
if (length(faces) < 5) or (length(verts) < 5) then exit;
//convert simple mesh to verbose structure that allows us to represent quadric properties
setlength(triangles, length(Faces));
setlength(vertices, length(Verts));
for i := 0 to high(triangles) do begin
triangles[i].v[0] := Faces[i].X;
triangles[i].v[1] := Faces[i].Y;
triangles[i].v[2] := Faces[i].Z;
end;
for i := 0 to high(verts) do
vertices[i].p := verts[i];
setlength(verts,0);
setlength(faces,0);
//now build mesh
setlength(refs,0); //to hide compiler hint
for i := 0 to high(triangles) do
triangles[i].deleted := false;
// main iteration loop
deleted_triangles := 1; //just to start first loop
iteration := 0;
while deleted_triangles > 0 do begin
deleted_triangles := 0;
// update mesh continuously
update_mesh(iteration, triangles, vertices, refs, nrefs);
iteration := iteration + 1;
// clear dirty flag
for i := 0 to high(triangles) do
triangles[i].dirty := false;
// All triangles with edges of zero will be removed
// remove vertices & mark deleted triangles
for i := 0 to high(triangles) do begin
t := @triangles[i];
if not IsZero(t^.err[3]) then continue;
if (t^.deleted) then continue;
if (t^.dirty) then continue;
for j := 0 to 2 do begin
if IsZero(t^.err[j]) then begin
i0 := t^.v[ j];
v0 := @vertices[i0];
i1 := t^.v[(j+1) mod 3];
v1 := @vertices[i1];
// Border check
if(v0^.border <> v1^.border) then continue;
// Compute vertex to collapse to
calculate_error(i0,i1,p, vertices);
setlength(deleted0, v0^.tcount);
setlength(deleted1, v1^.tcount);
// dont remove if flipped
if( flipped(p,i1,v0^,deleted0, triangles, vertices, refs) ) then continue;
if( flipped(p,i0,v1^,deleted1, triangles, vertices, refs) ) then continue;
// not flipped, so remove edge
v0^.p := p;
v0^.q := symMatAdd(v1^.q, v0^.q);
tstart := nrefs; //length(refs);
update_triangles(i0,v0^,deleted0,deleted_triangles, triangles, vertices, refs, nrefs);
update_triangles(i0,v1^,deleted1,deleted_triangles, triangles, vertices, refs, nrefs);
tcount := nrefs - tstart;//length(refs)-tstart;
if(tcount<=v0^.tcount) then begin // save ram
if (tcount > 0) then
move(refs[tstart], refs[v0^.tstart], tcount * sizeof(TRef)); //Move(src,dest,count);
end else // append
v0^.tstart := tstart;
v0^.tcount := tcount;
break;
end; //if <threshold
end; //loop j
// done?
end;//for i :, each triangle
end; //while we are still deleting triangles
// clean up mesh
compact_mesh(triangles, vertices);
//now convert back to simple structure
setlength(Faces, length(triangles));
setlength(Verts, length(vertices));
for i := 0 to high(triangles) do begin
Faces[i].X := triangles[i].v[0];
Faces[i].Y := triangles[i].v[1];
Faces[i].Z := triangles[i].v[2];
end;
for i := 0 to high(verts) do
verts[i] := vertices[i].p;
end; // simplify_mesh_lossless()
end.