diff --git a/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml new file mode 100644 index 0000000000000..0ecfc01ef049f --- /dev/null +++ b/.buildkite/lm-eval-harness/configs/Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml @@ -0,0 +1,11 @@ +# bash .buildkite/lm-eval-harness/run-lm-eval-gsm-vllm-baseline.sh -m nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test -b "auto" -l 250 -f 5 -t 1 +model_name: "nm-testing/Meta-Llama-3-8B-Instruct-W8-Channel-A8-Dynamic-Asym-Per-Token-Test" +tasks: +- name: "gsm8k" + metrics: + - name: "exact_match,strict-match" + value: 0.764 + - name: "exact_match,flexible-extract" + value: 0.764 +limit: 250 +num_fewshot: 5 diff --git a/.buildkite/lm-eval-harness/configs/models-small.txt b/.buildkite/lm-eval-harness/configs/models-small.txt index 064883859218a..64a0f428587af 100644 --- a/.buildkite/lm-eval-harness/configs/models-small.txt +++ b/.buildkite/lm-eval-harness/configs/models-small.txt @@ -1,6 +1,7 @@ Meta-Llama-3-8B-Instruct.yaml Meta-Llama-3-8B-Instruct-FP8-compressed-tensors.yaml Meta-Llama-3-8B-Instruct-INT8-compressed-tensors.yaml +Meta-Llama-3-8B-Instruct-INT8-compressed-tensors-asym.yaml Meta-Llama-3-8B-Instruct-nonuniform-compressed-tensors.yaml Meta-Llama-3-8B-Instruct-Channelwise-compressed-tensors.yaml Minitron-4B-Base-FP8.yaml diff --git a/.buildkite/lm-eval-harness/test_lm_eval_correctness.py b/.buildkite/lm-eval-harness/test_lm_eval_correctness.py index aa0b1b096b9ce..afc935c1a9318 100644 --- a/.buildkite/lm-eval-harness/test_lm_eval_correctness.py +++ b/.buildkite/lm-eval-harness/test_lm_eval_correctness.py @@ -49,10 +49,15 @@ def test_lm_eval_correctness(): results = launch_lm_eval(eval_config) # Confirm scores match ground truth. + success = True for task in eval_config["tasks"]: for metric in task["metrics"]: ground_truth = metric["value"] measured_value = results["results"][task["name"]][metric["name"]] print(f'{task["name"]} | {metric["name"]}: ' f'ground_truth={ground_truth} | measured={measured_value}') - assert numpy.isclose(ground_truth, measured_value, rtol=RTOL) + success = success and numpy.isclose( + ground_truth, measured_value, rtol=RTOL) + + # Assert at the end, print all scores even on failure for debugging. + assert success diff --git a/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml b/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml index 2b70e2da5d87c..eec2a51e2f8fd 100644 --- a/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml +++ b/.buildkite/nightly-benchmarks/benchmark-pipeline.yaml @@ -8,8 +8,7 @@ steps: containers: - image: badouralix/curl-jq command: - - sh - - .buildkite/nightly-benchmarks/scripts/wait-for-image.sh + - sh .buildkite/nightly-benchmarks/scripts/wait-for-image.sh - wait - label: "A100" agents: diff --git a/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh b/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh index c785e6a0da628..f16862907def1 100644 --- a/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh +++ b/.buildkite/nightly-benchmarks/scripts/wait-for-image.sh @@ -2,9 +2,11 @@ TOKEN=$(curl -s -L "https://public.ecr.aws/token?service=public.ecr.aws&scope=repository:q9t5s3a7/vllm-ci-test-repo:pull" | jq -r .token) URL="https://public.ecr.aws/v2/q9t5s3a7/vllm-ci-test-repo/manifests/$BUILDKITE_COMMIT" +TIMEOUT_SECONDS=10 + retries=0 while [ $retries -lt 1000 ]; do - if [ $(curl -s -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then + if [ $(curl -s --max-time $TIMEOUT_SECONDS -L -H "Authorization: Bearer $TOKEN" -o /dev/null -w "%{http_code}" $URL) -eq 200 ]; then exit 0 fi diff --git a/.buildkite/release-pipeline.yaml b/.buildkite/release-pipeline.yaml index 416fe344a36ea..e72138e29dd65 100644 --- a/.buildkite/release-pipeline.yaml +++ b/.buildkite/release-pipeline.yaml @@ -8,8 +8,9 @@ steps: - "docker run --rm -v $(pwd)/artifacts:/artifacts_host vllm-ci:build-image bash -c 'cp -r dist /artifacts_host && chmod -R a+rw /artifacts_host'" # rename the files to change linux -> manylinux1 - "for f in artifacts/dist/*.whl; do mv -- \"$$f\" \"$${f/linux/manylinux1}\"; done" - - "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/$BUILDKITE_COMMIT/" - - "aws s3 cp --recursive artifacts/dist s3://vllm-wheels/nightly/" + - "mv artifacts/dist/$(ls artifacts/dist) artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl" + - "aws s3 cp artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl s3://vllm-wheels/$BUILDKITE_COMMIT/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl" + - "aws s3 cp artifacts/dist/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl s3://vllm-wheels/nightly/vllm-1.0.0.dev-cp38-abi3-manylinux1_x86_64.whl" env: DOCKER_BUILDKIT: "1" diff --git a/.buildkite/run-amd-test.sh b/.buildkite/run-amd-test.sh index 972c62a091aea..df201cdc7c554 100755 --- a/.buildkite/run-amd-test.sh +++ b/.buildkite/run-amd-test.sh @@ -71,13 +71,47 @@ mkdir -p ${HF_CACHE} HF_MOUNT="/root/.cache/huggingface" commands=$@ +echo "Commands:$commands" +#ignore certain kernels tests +if [[ $commands == *" kernels "* ]]; then + commands="${commands} \ + --ignore=kernels/test_attention.py \ + --ignore=kernels/test_attention_selector.py \ + --ignore=kernels/test_blocksparse_attention.py \ + --ignore=kernels/test_causal_conv1d.py \ + --ignore=kernels/test_cutlass.py \ + --ignore=kernels/test_encoder_decoder_attn.py \ + --ignore=kernels/test_flash_attn.py \ + --ignore=kernels/test_flashinfer.py \ + --ignore=kernels/test_gguf.py \ + --ignore=kernels/test_int8_quant.py \ + --ignore=kernels/test_machete_gemm.py \ + --ignore=kernels/test_mamba_ssm.py \ + --ignore=kernels/test_marlin_gemm.py \ + --ignore=kernels/test_moe.py \ + --ignore=kernels/test_prefix_prefill.py \ + --ignore=kernels/test_rand.py \ + --ignore=kernels/test_sampler.py" +fi + +#ignore certain Entrypoints tests +if [[ $commands == *" entrypoints/openai "* ]]; then + commands=${commands//" entrypoints/openai "/" entrypoints/openai \ + --ignore=entrypoints/openai/test_accuracy.py \ + --ignore=entrypoints/openai/test_audio.py \ + --ignore=entrypoints/openai/test_encoder_decoder.py \ + --ignore=entrypoints/openai/test_embedding.py \ + --ignore=entrypoints/openai/test_oot_registration.py "} +fi + PARALLEL_JOB_COUNT=8 # check if the command contains shard flag, we will run all shards in parallel because the host have 8 GPUs. if [[ $commands == *"--shard-id="* ]]; then for GPU in $(seq 0 $(($PARALLEL_JOB_COUNT-1))); do #replace shard arguments - commands=${@//"--shard-id= "/"--shard-id=${GPU} "} + commands=${commands//"--shard-id= "/"--shard-id=${GPU} "} commands=${commands//"--num-shards= "/"--num-shards=${PARALLEL_JOB_COUNT} "} + echo "Shard ${GPU} commands:$commands" docker run \ --device /dev/kfd --device /dev/dri \ --network host \ diff --git a/.buildkite/run-cpu-test-ppc64le.sh b/.buildkite/run-cpu-test-ppc64le.sh index a01cf3fe67489..49ae838cf0690 100755 --- a/.buildkite/run-cpu-test-ppc64le.sh +++ b/.buildkite/run-cpu-test-ppc64le.sh @@ -11,8 +11,9 @@ trap remove_docker_container EXIT remove_docker_container # Run the image, setting --shm-size=4g for tensor parallel. +source /etc/environment #docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --env VLLM_CPU_KVCACHE_SPACE=4 --shm-size=4g --name cpu-test cpu-test -docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN --name cpu-test cpu-test +docker run -itd --entrypoint /bin/bash -v ~/.cache/huggingface:/root/.cache/huggingface --privileged=true --network host -e HF_TOKEN=$HF_TOKEN --name cpu-test cpu-test # Run basic model test docker exec cpu-test bash -c " diff --git a/.buildkite/run-cpu-test.sh b/.buildkite/run-cpu-test.sh index ca9cf15780e25..73ce82c5857ab 100644 --- a/.buildkite/run-cpu-test.sh +++ b/.buildkite/run-cpu-test.sh @@ -22,13 +22,17 @@ docker exec cpu-test-avx2 bash -c "python3 examples/offline_inference.py" # Run basic model test docker exec cpu-test bash -c " - pip install pytest matplotlib einops transformers_stream_generator - pytest -v -s tests/models -m \"not vlm\" --ignore=tests/models/test_embedding.py \ - --ignore=tests/models/test_oot_registration.py \ - --ignore=tests/models/test_registry.py \ - --ignore=tests/models/test_fp8.py \ - --ignore=tests/models/test_jamba.py \ - --ignore=tests/models/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported + pip install pytest matplotlib einops transformers_stream_generator datamodel_code_generator + pytest -v -s tests/models/decoder_only/language \ + --ignore=tests/models/test_fp8.py \ + --ignore=tests/models/decoder_only/language/test_jamba.py \ + --ignore=tests/models/decoder_only/language/test_danube3_4b.py" # Mamba and Danube3-4B on CPU is not supported + +# Run compressed-tensor test +docker exec cpu-test bash -c " + pytest -s -v \ + tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_static_setup \ + tests/quantization/test_compressed_tensors.py::test_compressed_tensors_w8a8_dynanmic_per_token" # online inference docker exec cpu-test bash -c " diff --git a/.buildkite/run-xpu-test.sh b/.buildkite/run-xpu-test.sh index 22a7e76937a76..6ffa66d5ef3d6 100644 --- a/.buildkite/run-xpu-test.sh +++ b/.buildkite/run-xpu-test.sh @@ -11,4 +11,4 @@ trap remove_docker_container EXIT remove_docker_container # Run the image and launch offline inference -docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path xpu-test python3 examples/offline_inference.py +docker run --network host --name xpu-test --device /dev/dri -v /dev/dri/by-path:/dev/dri/by-path --entrypoint="" xpu-test python3 examples/offline_inference.py diff --git a/.buildkite/test-pipeline.yaml b/.buildkite/test-pipeline.yaml index a0c7b7442b3b3..bb42b5f29a725 100644 --- a/.buildkite/test-pipeline.yaml +++ b/.buildkite/test-pipeline.yaml @@ -9,6 +9,7 @@ # label(str): the name of the test. emoji allowed. # fast_check(bool): whether to run this on each commit on fastcheck pipeline. # fast_check_only(bool): run this test on fastcheck pipeline only +# optional(bool): never run this test by default (i.e. need to unblock manually) # command(str): the single command to run for tests. incompatible with commands. # commands(list): the list of commands to run for test. incompatbile with command. # mirror_hardwares(list): the list of hardwares to run the test on as well. currently only supports [amd] @@ -39,17 +40,20 @@ steps: # Check API reference (if it fails, you may have missing mock imports) - grep \"sig sig-object py\" build/html/dev/sampling_params.html -- label: Async Engine, Inputs, Utils, Worker Test # 15min +- label: Async Engine, Inputs, Utils, Worker Test # 24min fast_check: true source_file_dependencies: - vllm/ + - tests/mq_llm_engine - tests/async_engine - tests/test_inputs - tests/multimodal - tests/test_utils - tests/worker commands: - - pytest -v -s async_engine # Async Engine + - pytest -v -s mq_llm_engine # MQLLMEngine + - pytest -v -s async_engine # AsyncLLMEngine + - NUM_SCHEDULER_STEPS=4 pytest -v -s async_engine/test_async_llm_engine.py - pytest -v -s test_inputs.py - pytest -v -s multimodal - pytest -v -s test_utils.py # Utils @@ -67,7 +71,7 @@ steps: - VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py - VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py - + - label: Core Test # 10min mirror_hardwares: [amd] fast_check: true @@ -78,20 +82,24 @@ steps: commands: - pytest -v -s core -- label: Entrypoints Test # 20min +- label: Entrypoints Test # 40min working_dir: "/vllm-workspace/tests" fast_check: true - #mirror_hardwares: [amd] + mirror_hardwares: [amd] source_file_dependencies: - vllm/ commands: - pip install -e ./plugins/vllm_add_dummy_model - pip install git+https://github.com/EleutherAI/lm-evaluation-harness.git@a4987bba6e9e9b3f22bd3a6c1ecf0abd04fd5622#egg=lm_eval[api] - - pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py + - pytest -v -s entrypoints/llm --ignore=entrypoints/llm/test_lazy_outlines.py --ignore=entrypoints/llm/test_generate.py --ignore=entrypoints/llm/test_generate_multiple_loras.py --ignore=entrypoints/llm/test_guided_generate.py - pytest -v -s entrypoints/llm/test_lazy_outlines.py # it needs a clean process - - pytest -v -s entrypoints/openai + - pytest -v -s entrypoints/llm/test_generate.py # it needs a clean process + - pytest -v -s entrypoints/llm/test_generate_multiple_loras.py # it needs a clean process + - pytest -v -s entrypoints/llm/test_guided_generate.py # it needs a clean process + - pytest -v -s entrypoints/openai --ignore=entrypoints/openai/test_oot_registration.py + - pytest -v -s entrypoints/openai/test_oot_registration.py # it needs a clean process - pytest -v -s entrypoints/test_chat_utils.py - + - pytest -v -s entrypoints/offline_mode # Needs to avoid interference with other tests - label: Distributed Tests (4 GPUs) # 10min working_dir: "/vllm-workspace/tests" @@ -144,7 +152,7 @@ steps: # OOM in the CI unless we run this separately - pytest -v -s tokenization -- label: Examples Test # 12min +- label: Examples Test # 15min working_dir: "/vllm-workspace/examples" #mirror_hardwares: [amd] source_file_dependencies: @@ -162,31 +170,7 @@ steps: - python3 tensorize_vllm_model.py --model facebook/opt-125m serialize --serialized-directory /tmp/ --suffix v1 && python3 tensorize_vllm_model.py --model facebook/opt-125m deserialize --path-to-tensors /tmp/vllm/facebook/opt-125m/v1/model.tensors - python3 offline_inference_encoder_decoder.py -- label: Models Test # 1hr10min - source_file_dependencies: - - vllm/ - - tests/models - commands: - - pip install -e ./plugins/vllm_add_dummy_model - - pytest -v -s models/test_oot_registration.py # it needs a clean process - - pytest -v -s models -m \"not vlm\" --ignore=models/test_oot_registration.py - -- label: torch compile integration test - source_file_dependencies: - - vllm/ - commands: - - pytest -v -s ./compile/test_full_graph.py - - pytest -v -s ./compile/test_wrapper.py - - -- label: Vision Language Models Test # 42min - #mirror_hardwares: [amd] - source_file_dependencies: - - vllm/ - commands: - - pytest -v -s models -m vlm - -- label: Prefix Caching Test # 7min +- label: Prefix Caching Test # 9min #mirror_hardwares: [amd] source_file_dependencies: - vllm/ @@ -194,7 +178,7 @@ steps: commands: - pytest -v -s prefix_caching -- label: Samplers Test # 18min +- label: Samplers Test # 36min source_file_dependencies: - vllm/model_executor/layers - vllm/sampling_metadata.py @@ -210,16 +194,17 @@ steps: - tests/test_logits_processor command: pytest -v -s test_logits_processor.py -- label: Speculative decoding tests # 22min +- label: Speculative decoding tests # 30min source_file_dependencies: - vllm/spec_decode - tests/spec_decode commands: # See https://github.com/vllm-project/vllm/issues/5152 - export VLLM_ATTENTION_BACKEND=XFORMERS - - pytest -v -s spec_decode + - pytest -v -s spec_decode/e2e/test_multistep_correctness.py + - pytest -v -s spec_decode --ignore=spec_decode/e2e/test_multistep_correctness.py -- label: LoRA Test %N # 30min each +- label: LoRA Test %N # 15min each mirror_hardwares: [amd] source_file_dependencies: - vllm/lora @@ -227,7 +212,23 @@ steps: command: pytest -v -s lora --shard-id=$$BUILDKITE_PARALLEL_JOB --num-shards=$$BUILDKITE_PARALLEL_JOB_COUNT --ignore=lora/test_long_context.py parallelism: 4 -- label: Kernels Test %N # 30min each +- label: "PyTorch Fullgraph Smoke Test" # 9min + fast_check: true + source_file_dependencies: + - vllm/ + - tests/compile + commands: + - pytest -v -s compile/test_full_graph_smoke.py + +- label: "PyTorch Fullgraph Test" # 18min + source_file_dependencies: + - vllm/ + - tests/compile + commands: + - pytest -v -s compile/test_full_graph.py + +- label: Kernels Test %N # 1h each + mirror_hardwares: [amd] source_file_dependencies: - csrc/ - vllm/attention @@ -256,7 +257,7 @@ steps: - pip install aiohttp - bash run-benchmarks.sh -- label: Quantization Test # 15min +- label: Quantization Test # 33min source_file_dependencies: - csrc/ - vllm/model_executor/layers/quantization @@ -273,6 +274,13 @@ steps: - export VLLM_WORKER_MULTIPROC_METHOD=spawn - bash ./run-tests.sh -c configs/models-small.txt -t 1 +- label: Encoder Decoder tests # 5min + source_file_dependencies: + - vllm/ + - tests/encoder_decoder + commands: + - pytest -v -s encoder_decoder + - label: OpenAI-Compatible Tool Use # 20 min fast_check: false mirror_hardwares: [ amd ] @@ -282,6 +290,55 @@ steps: commands: - pytest -v -s tool_use +##### models test ##### + +- label: Basic Models Test # 3min + source_file_dependencies: + - vllm/ + - tests/models + commands: + - pip install -e ./plugins/vllm_add_dummy_model + - pytest -v -s models/test_oot_registration.py # it needs a clean process + - pytest -v -s models/*.py --ignore=models/test_oot_registration.py + +- label: Decoder-only Language Models Test # 1h36min + #mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/models/decoder_only/language + commands: + - pytest -v -s models/decoder_only/language + +- label: Decoder-only Multi-Modal Models Test # 1h31min + #mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/models/decoder_only/audio_language + - tests/models/decoder_only/vision_language + commands: + - pytest -v -s models/decoder_only/audio_language + - pytest -v -s models/decoder_only/vision_language + +- label: Other Models Test # 6min + #mirror_hardwares: [amd] + source_file_dependencies: + - vllm/ + - tests/models/embedding/language + - tests/models/encoder_decoder/language + - tests/models/encoder_decoder/vision_language + commands: + - pytest -v -s models/embedding/language + - pytest -v -s models/encoder_decoder/language + - pytest -v -s models/encoder_decoder/vision_language + +- label: Custom Models Test + #mirror_hardwares: [amd] + optional: true + commands: + # PR authors can temporarily add commands below to test individual models + # e.g. pytest -v -s models/encoder_decoder/vision_language/test_mllama.py + # *To avoid merge conflicts, remember to REMOVE (not just comment out) them before merging the PR* + ##### 1 GPU test ##### ##### multi gpus test ##### @@ -307,13 +364,13 @@ steps: - tests/distributed/ commands: - # the following commands are for the first node, with ip 192.168.10.10 (ray environment already set up) - - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py + - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed' - VLLM_MULTI_NODE=1 pytest -v -s distributed/test_multi_node_assignment.py - VLLM_MULTI_NODE=1 pytest -v -s distributed/test_pipeline_parallel.py - # the following commands are for the second node, with ip 192.168.10.11 (ray environment already set up) - - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py + - VLLM_TEST_SAME_HOST=0 torchrun --nnodes 2 --nproc-per-node=2 --rdzv_backend=c10d --rdzv_endpoint=192.168.10.10 distributed/test_same_node.py | grep -q 'Same node test passed' -- label: Distributed Tests (2 GPUs) # 28min +- label: Distributed Tests (2 GPUs) # 40min #mirror_hardwares: [amd] working_dir: "/vllm-workspace/tests" num_gpus: 2 @@ -323,19 +380,23 @@ steps: - vllm/executor/ - vllm/model_executor/models/ - tests/distributed/ + - vllm/compilation commands: - - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py - - TARGET_TEST_SUITE=L4 pytest -v -s distributed/test_basic_distributed_correctness.py - - pytest -v -s distributed/test_basic_distributed_correctness_enc_dec.py - - pytest -v -s distributed/test_chunked_prefill_distributed.py - - pytest -v -s distributed/test_multimodal_broadcast.py + - pytest -v -s ./compile/test_full_graph_multi_gpu.py + - pytest -v -s ./compile/test_wrapper.py + - VLLM_TEST_SAME_HOST=1 torchrun --nproc-per-node=4 distributed/test_same_node.py | grep -q 'Same node test passed' + - TARGET_TEST_SUITE=L4 pytest basic_correctness/ -v -s -m distributed_2_gpus + # Avoid importing model tests that cause CUDA reinitialization error + - pytest models/encoder_decoder/language/test_bart.py -v -s -m distributed_2_gpus + - pytest models/encoder_decoder/vision_language/test_broadcast.py -v -s -m distributed_2_gpus + - pytest models/decoder_only/vision_language/test_broadcast.py -v -s -m distributed_2_gpus - pytest -v -s spec_decode/e2e/test_integration_dist_tp2.py - pip install -e ./plugins/vllm_add_dummy_model - pytest -v -s distributed/test_distributed_oot.py - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s test_sharded_state_loader.py - CUDA_VISIBLE_DEVICES=0,1 pytest -v -s distributed/test_utils.py -- label: Multi-step Tests (4 GPUs) # 21min +- label: Multi-step Tests (4 GPUs) # 36min working_dir: "/vllm-workspace/tests" num_gpus: 4 source_file_dependencies: @@ -353,7 +414,7 @@ steps: - pytest -v -s multi_step/test_correctness_async_llm.py - pytest -v -s multi_step/test_correctness_llm.py -- label: Pipeline Parallelism Test # 23min +- label: Pipeline Parallelism Test # 45min working_dir: "/vllm-workspace/tests" num_gpus: 4 source_file_dependencies: @@ -379,7 +440,7 @@ steps: - export VLLM_WORKER_MULTIPROC_METHOD=spawn - pytest -v -s -x lora/test_long_context.py -- label: Weight Loading Multiple GPU Test +- label: Weight Loading Multiple GPU Test # 33min working_dir: "/vllm-workspace/tests" num_gpus: 2 source_file_dependencies: @@ -412,7 +473,7 @@ steps: # NOTE: don't test llama model here, it seems hf implementation is buggy # see https://github.com/vllm-project/vllm/pull/5689 for details - pytest -v -s distributed/test_custom_all_reduce.py - - TARGET_TEST_SUITE=A100 pytest -v -s distributed/test_basic_distributed_correctness.py + - TARGET_TEST_SUITE=A100 pytest basic_correctness/ -v -s -m distributed_2_gpus - pytest -v -s -x lora/test_mixtral.py - label: LM Eval Large Models # optional diff --git a/.dockerignore b/.dockerignore index 79fa088fa809c..17ed0d97c88b3 100644 --- a/.dockerignore +++ b/.dockerignore @@ -1,4 +1,6 @@ -vllm/*.so +/.github/ /.venv /build dist +Dockerfile* +vllm/*.so diff --git a/.github/ISSUE_TEMPLATE/400-bug report.yml b/.github/ISSUE_TEMPLATE/400-bug report.yml index d4113da8b5b81..30db1721a9df7 100644 --- a/.github/ISSUE_TEMPLATE/400-bug report.yml +++ b/.github/ISSUE_TEMPLATE/400-bug report.yml @@ -30,6 +30,15 @@ body: validations: required: true +- type: textarea + attributes: + label: Model Input Dumps + description: | + If you are facing crashing due to illegal memory access or other issues with model execution, vLLM may dump the problematic input of the model. In this case, you will see the message `Error in model execution (input dumped to /tmp/err_xxx.pkl)`. If you see this message, please zip the file (because GitHub doesn't support .pkl file format) and upload it here. This will help us to reproduce the issue and facilitate the debugging process. + placeholder: | + Upload the dumped input file. + validations: + required: false - type: textarea attributes: label: 🐛 Describe the bug diff --git a/.github/PULL_REQUEST_TEMPLATE.md b/.github/PULL_REQUEST_TEMPLATE.md index 262ce8e1530a8..be0afc6305044 100644 --- a/.github/PULL_REQUEST_TEMPLATE.md +++ b/.github/PULL_REQUEST_TEMPLATE.md @@ -39,6 +39,16 @@ FIX #xxxx (*link existing issues this PR will resolve*)
docs/source/
if the PR modifies the user-facing behaviors of vLLM. It helps vLLM user understand and utilize the new features or changes.Each custom kernel needs a schema and one or more implementations to be registered with PyTorch.
+Tensors
require meta-functions. Meta-functions should be implemented and registered in python so that dynamic dims can be handled automatically. See above documents for a description of meta-functions.torch.libary.opcheck()
to test the function registration and meta-function for any registered ops. See tests/kernels
for examples.Please keep the changes as concise as possible. For major architectural changes (>500 LOC excluding kernel/data/config/test), we would expect a GitHub issue (RFC) discussing the technical design and justification. Otherwise, we will tag it with rfc-required
and might not go through the PR.