From 008cf886c9361e696f70a15a282d72b58686468a Mon Sep 17 00:00:00 2001 From: Harsha vardhan manoj Bikki <39381063+hbikki@users.noreply.github.com> Date: Wed, 4 Sep 2024 16:33:43 -0700 Subject: [PATCH] =?UTF-8?q?[Neuron]=20Adding=20support=20for=20adding/=20o?= =?UTF-8?q?verriding=20neuron=20configuration=20a=E2=80=A6=20(#8062)?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit Co-authored-by: Harsha Bikki --- ...line_inference_neuron_int8_quantization.py | 50 ++++++++++++++ vllm/config.py | 69 +++++++++++-------- vllm/engine/arg_utils.py | 17 ++++- vllm/engine/llm_engine.py | 2 + .../layers/quantization/__init__.py | 3 + .../layers/quantization/neuron_quant.py | 67 ++++++++++++++++++ vllm/model_executor/model_loader/neuron.py | 65 ++++++++++++++--- vllm/worker/neuron_model_runner.py | 12 +++- 8 files changed, 243 insertions(+), 42 deletions(-) create mode 100644 examples/offline_inference_neuron_int8_quantization.py create mode 100644 vllm/model_executor/layers/quantization/neuron_quant.py diff --git a/examples/offline_inference_neuron_int8_quantization.py b/examples/offline_inference_neuron_int8_quantization.py new file mode 100644 index 0000000000000..8ec17e3400953 --- /dev/null +++ b/examples/offline_inference_neuron_int8_quantization.py @@ -0,0 +1,50 @@ +import os + +from vllm import LLM, SamplingParams + +# creates XLA hlo graphs for all the context length buckets. +os.environ['NEURON_CONTEXT_LENGTH_BUCKETS'] = "128,512,1024,2048" +# creates XLA hlo graphs for all the token gen buckets. +os.environ['NEURON_TOKEN_GEN_BUCKETS'] = "128,512,1024,2048" +# Quantizes neuron model weight to int8 , +# The default config for quantization is int8 dtype. +os.environ['NEURON_QUANT_DTYPE'] = "s8" + +# Sample prompts. +prompts = [ + "Hello, my name is", + "The president of the United States is", + "The capital of France is", + "The future of AI is", +] +# Create a sampling params object. +sampling_params = SamplingParams(temperature=0.8, top_p=0.95) + +# Create an LLM. +llm = LLM( + model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", + max_num_seqs=8, + # The max_model_len and block_size arguments are required to be same as + # max sequence length when targeting neuron device. + # Currently, this is a known limitation in continuous batching support + # in transformers-neuronx. + # TODO(liangfu): Support paged-attention in transformers-neuronx. + max_model_len=2048, + block_size=2048, + # The device can be automatically detected when AWS Neuron SDK is installed. + # The device argument can be either unspecified for automated detection, + # or explicitly assigned. + device="neuron", + quantization="neuron_quant", + override_neuron_config={ + "cast_logits_dtype": "bfloat16", + }, + tensor_parallel_size=2) +# Generate texts from the prompts. The output is a list of RequestOutput objects +# that contain the prompt, generated text, and other information. +outputs = llm.generate(prompts, sampling_params) +# Print the outputs. +for output in outputs: + prompt = output.prompt + generated_text = output.outputs[0].text + print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") diff --git a/vllm/config.py b/vllm/config.py index b84d91d402370..9b3f4f9206300 100644 --- a/vllm/config.py +++ b/vllm/config.py @@ -1,8 +1,8 @@ import enum import json from dataclasses import dataclass, field, fields -from typing import (TYPE_CHECKING, ClassVar, List, Mapping, Optional, Tuple, - Type, Union) +from typing import (TYPE_CHECKING, Any, ClassVar, Dict, List, Mapping, + Optional, Tuple, Type, Union) import torch from transformers import PretrainedConfig @@ -115,35 +115,39 @@ class ModelConfig: the model name will be the same as `model`. limit_mm_per_prompt: Maximum number of data instances per modality per prompt. Only applicable for multimodal models. + override_neuron_config: Initialize non default neuron config or + override default neuron config that are specific to Neuron devices, + this argument will be used to configure the neuron config that + can not be gathered from the vllm arguments. """ def __init__( - self, - model: str, - tokenizer: str, - tokenizer_mode: str, - trust_remote_code: bool, - dtype: Union[str, torch.dtype], - seed: int, - revision: Optional[str] = None, - code_revision: Optional[str] = None, - rope_scaling: Optional[dict] = None, - rope_theta: Optional[float] = None, - tokenizer_revision: Optional[str] = None, - max_model_len: Optional[int] = None, - spec_target_max_model_len: Optional[int] = None, - quantization: Optional[str] = None, - quantization_param_path: Optional[str] = None, - enforce_eager: Optional[bool] = None, - max_context_len_to_capture: Optional[int] = None, - max_seq_len_to_capture: Optional[int] = None, - max_logprobs: int = 20, - disable_sliding_window: bool = False, - skip_tokenizer_init: bool = False, - served_model_name: Optional[Union[str, List[str]]] = None, - limit_mm_per_prompt: Optional[Mapping[str, int]] = None, - use_async_output_proc: bool = True, - ) -> None: + self, + model: str, + tokenizer: str, + tokenizer_mode: str, + trust_remote_code: bool, + dtype: Union[str, torch.dtype], + seed: int, + revision: Optional[str] = None, + code_revision: Optional[str] = None, + rope_scaling: Optional[dict] = None, + rope_theta: Optional[float] = None, + tokenizer_revision: Optional[str] = None, + max_model_len: Optional[int] = None, + spec_target_max_model_len: Optional[int] = None, + quantization: Optional[str] = None, + quantization_param_path: Optional[str] = None, + enforce_eager: Optional[bool] = None, + max_context_len_to_capture: Optional[int] = None, + max_seq_len_to_capture: Optional[int] = None, + max_logprobs: int = 20, + disable_sliding_window: bool = False, + skip_tokenizer_init: bool = False, + served_model_name: Optional[Union[str, List[str]]] = None, + limit_mm_per_prompt: Optional[Mapping[str, int]] = None, + use_async_output_proc: bool = True, + override_neuron_config: Optional[Dict[str, Any]] = None) -> None: self.model = model self.tokenizer = tokenizer self.tokenizer_mode = tokenizer_mode @@ -227,6 +231,9 @@ def __init__( limit_mm_per_prompt) if not self.skip_tokenizer_init: self._verify_tokenizer_mode() + + self.override_neuron_config = override_neuron_config if is_neuron( + ) else None self._verify_embedding_mode() self._verify_quantization() self._verify_cuda_graph() @@ -275,6 +282,7 @@ def _verify_quantization(self) -> None: "experts_int8" ] tpu_supported_quantization = ["tpu_int8"] + neuron_supported_quantization = ["neuron_quant"] if self.quantization is not None: self.quantization = self.quantization.lower() @@ -329,6 +337,11 @@ def _verify_quantization(self) -> None: "Using AWQ quantization with ROCm, but VLLM_USE_TRITON_AWQ" " is not set, enabling VLLM_USE_TRITON_AWQ.") envs.VLLM_USE_TRITON_AWQ = True + if is_neuron( + ) and self.quantization not in neuron_supported_quantization: + raise ValueError( + f"{self.quantization} quantization is currently not " + f"supported in Neuron Backend.") def _verify_cuda_graph(self) -> None: if self.max_seq_len_to_capture is None: diff --git a/vllm/engine/arg_utils.py b/vllm/engine/arg_utils.py index 8dbe6504d21bd..f0b866db64324 100644 --- a/vllm/engine/arg_utils.py +++ b/vllm/engine/arg_utils.py @@ -2,8 +2,8 @@ import dataclasses import json from dataclasses import dataclass -from typing import (TYPE_CHECKING, Dict, List, Mapping, Optional, Tuple, Type, - Union) +from typing import (TYPE_CHECKING, Any, Dict, List, Mapping, Optional, Tuple, + Type, Union) import torch @@ -149,6 +149,7 @@ class EngineArgs: otlp_traces_endpoint: Optional[str] = None collect_detailed_traces: Optional[str] = None disable_async_output_proc: bool = False + override_neuron_config: Optional[Dict[str, Any]] = None def __post_init__(self): if self.tokenizer is None: @@ -742,6 +743,16 @@ def add_cli_args(parser: FlexibleArgumentParser) -> FlexibleArgumentParser: default=EngineArgs.disable_async_output_proc, help="Disable async output processing. This may result in " "lower performance.") + parser.add_argument( + '--override-neuron-config', + type=lambda configs: { + str(key): value + for key, value in + (config.split(':') for config in configs.split(',')) + }, + default=None, + help="override or set neuron device configuration.") + return parser @classmethod @@ -802,7 +813,7 @@ def create_engine_config(self) -> EngineConfig: served_model_name=self.served_model_name, limit_mm_per_prompt=self.limit_mm_per_prompt, use_async_output_proc=not self.disable_async_output_proc, - ) + override_neuron_config=self.override_neuron_config) cache_config = CacheConfig( block_size=self.block_size if self.device != "neuron" else self.max_model_len, # neuron needs block_size = max_model_len diff --git a/vllm/engine/llm_engine.py b/vllm/engine/llm_engine.py index 7da4f7b25db9e..50dcb6937eb6f 100644 --- a/vllm/engine/llm_engine.py +++ b/vllm/engine/llm_engine.py @@ -214,6 +214,7 @@ def __init__( "Initializing an LLM engine (v%s) with config: " "model=%r, speculative_config=%r, tokenizer=%r, " "skip_tokenizer_init=%s, tokenizer_mode=%s, revision=%s, " + "override_neuron_config=%s, " "rope_scaling=%r, rope_theta=%r, tokenizer_revision=%s, " "trust_remote_code=%s, dtype=%s, max_seq_len=%d, " "download_dir=%r, load_format=%s, tensor_parallel_size=%d, " @@ -232,6 +233,7 @@ def __init__( model_config.skip_tokenizer_init, model_config.tokenizer_mode, model_config.revision, + model_config.override_neuron_config, model_config.rope_scaling, model_config.rope_theta, model_config.tokenizer_revision, diff --git a/vllm/model_executor/layers/quantization/__init__.py b/vllm/model_executor/layers/quantization/__init__.py index 95b160f4287f9..c6fb6ca0d2e01 100644 --- a/vllm/model_executor/layers/quantization/__init__.py +++ b/vllm/model_executor/layers/quantization/__init__.py @@ -22,6 +22,8 @@ from vllm.model_executor.layers.quantization.gptq_marlin_24 import ( GPTQMarlin24Config) from vllm.model_executor.layers.quantization.marlin import MarlinConfig +from vllm.model_executor.layers.quantization.neuron_quant import ( + NeuronQuantConfig) from vllm.model_executor.layers.quantization.qqq import QQQConfig from vllm.model_executor.layers.quantization.squeezellm import SqueezeLLMConfig from vllm.model_executor.layers.quantization.tpu_int8 import Int8TpuConfig @@ -46,6 +48,7 @@ "bitsandbytes": BitsAndBytesConfig, "qqq": QQQConfig, "experts_int8": ExpertsInt8Config, + "neuron_quant": NeuronQuantConfig, } diff --git a/vllm/model_executor/layers/quantization/neuron_quant.py b/vllm/model_executor/layers/quantization/neuron_quant.py new file mode 100644 index 0000000000000..2624981f6a614 --- /dev/null +++ b/vllm/model_executor/layers/quantization/neuron_quant.py @@ -0,0 +1,67 @@ +import os +from importlib.util import find_spec +from typing import Any, Dict, List, Optional + +from torch.nn import Module + +from vllm.model_executor.layers.quantization.base_config import ( + QuantizationConfig) + +SUPPORTED_QUANT_DTYPE_LIST = ['s8', 'f8e4m3fn'] + + +class NeuronQuantConfig(QuantizationConfig): + """Int8 Quantization Config class for Neuron Backend.""" + + def __init__( + self, + dequant_dtype: str = "f16", + quantize_method: str = "vector_dynamic", + ) -> None: + self.quant_dtype = os.getenv("NEURON_QUANT_DTYPE", "s8") + if self.quant_dtype not in SUPPORTED_QUANT_DTYPE_LIST: + raise ValueError( + f"Neuron quantization datatype {self.quant_dtype} is not valid," + f"the quantization datatype should match one of the below types" + f"{SUPPORTED_QUANT_DTYPE_LIST}") + self.dequant_dtype = dequant_dtype + self.quantize_method = quantize_method + + def get_name(self) -> str: + return "neuron_quant" + + def get_supported_act_dtypes(self) -> List[str]: + return SUPPORTED_QUANT_DTYPE_LIST + + @classmethod + def get_min_capability(cls) -> int: + raise NotImplementedError( + "This function should not be called with Neuron Backend") + + @staticmethod + def get_config_filenames() -> List[str]: + return [] + + @classmethod + def from_config(cls, config: Dict[str, Any]) -> "NeuronQuantConfig": + quantize_method = cls.get_from_keys(config, ["quantize_method"]) + dequant_dtype = cls.get_from_keys(config, ["dequant_dtype"]) + return cls(dequant_dtype=dequant_dtype, + quantize_method=quantize_method) + + def get_quant_method(self, layer: Module, prefix: str) -> Optional[Any]: + if find_spec("transformers_neuronx") is not None: + return self.get_quantization_config() + else: + raise NotImplementedError( + "Neuron Quantization is only supported through" + " transformers_neuronx.") + + def get_scaled_act_names(self) -> List[str]: + return [] + + def get_quantization_config(self): + from transformers_neuronx.config import QuantizationConfig + return QuantizationConfig(quant_dtype=self.quant_dtype, + dequant_dtype=self.dequant_dtype, + quantize_method=self.quantize_method) diff --git a/vllm/model_executor/model_loader/neuron.py b/vllm/model_executor/model_loader/neuron.py index 7396ac833e782..594ae442ef328 100644 --- a/vllm/model_executor/model_loader/neuron.py +++ b/vllm/model_executor/model_loader/neuron.py @@ -10,6 +10,7 @@ from vllm.config import ModelConfig, ParallelConfig, SchedulerConfig from vllm.model_executor.layers.logits_processor import LogitsProcessor +from vllm.model_executor.layers.quantization import get_quantization_config from vllm.model_executor.layers.sampler import Sampler, SamplerOutput from vllm.model_executor.sampling_metadata import SamplingMetadata @@ -81,8 +82,7 @@ def load_weights(self, model_name_or_path: str, **kwargs): neuronx_model_cls = getattr(neuronx_module, neuronx_model_cls_name) split_model_dir = f"{model_name_or_path}-split" - if os.path.isdir(os.path.join(model_name_or_path, - "pytorch_model.bin")): + if _is_pretrained_neuron_checkpoint(model_name_or_path): split_model_dir = model_name_or_path elif not os.path.exists(f"{model_name_or_path}-split"): hf_model_cls = getattr(transformers, hf_model_cls_name) @@ -97,6 +97,23 @@ def load_weights(self, model_name_or_path: str, **kwargs): self.model.to_neuron() +def _is_pretrained_neuron_checkpoint(model_name_or_path: str) -> bool: + # Checking if the neuron checkpoint is saved in the old format. + if os.path.isdir(os.path.join(model_name_or_path, "pytorch_model.bin")): + return True + # Checking if the neuron checkpoint is saved in the new format. + pretrained_split_files = ["config.json", "generation_config.json"] + pretrained_split_format = ".safetensors" + for file in pretrained_split_files: + file_path = os.path.join(model_name_or_path, file) + if not os.path.isfile(file_path): + return False + for file in os.listdir(model_name_or_path): + if file.endswith(pretrained_split_format): + return True + return False + + def _get_model_architecture(config: PretrainedConfig) -> str: architectures = getattr(config, "architectures", []) for arch in architectures: @@ -119,19 +136,51 @@ def _get_buckets(env: str, default_value: List[int]) -> List[int]: return buckets_list +def _get_default_neuron_config(model_config: ModelConfig, + parallel_config: ParallelConfig, + scheduler_config: SchedulerConfig): + from transformers_neuronx.config import ContinuousBatchingConfig + from transformers_neuronx.constants import LAYOUT_BSH + + continuous_batching_config = ContinuousBatchingConfig( + batch_size_for_shared_caches=scheduler_config.max_num_seqs) + quant_config = dict( + dequant_dtype=TORCH_DTYPE_TO_NEURON_AMP[model_config.dtype], + quantize_method="vector_dynamic") + neuron_quantization_config_builder = lambda quant: get_quantization_config( + quant).from_config(quant_config).get_quant_method(None, "") + # TODO: Add Paged attention config to the default neuron arguments. + default_neuron_args = dict( + collectives_layout=LAYOUT_BSH, + attention_layout=LAYOUT_BSH, + fuse_qkv=True, + quant=neuron_quantization_config_builder(model_config.quantization) + if model_config.quantization else None, + continuous_batching=continuous_batching_config, + weight_tiling=bool(model_config.quantization)) + return default_neuron_args + + +def _get_neuron_config_after_override(default_neuron_config, + overridden_neuron_config): + from transformers_neuronx.config import NeuronConfig + overridden_neuron_config = overridden_neuron_config or {} + default_neuron_config.update(overridden_neuron_config) + return NeuronConfig(**default_neuron_config) + + def get_neuron_model(model_config: ModelConfig, parallel_config: ParallelConfig, scheduler_config: SchedulerConfig) -> nn.Module: - from transformers_neuronx.config import (ContinuousBatchingConfig, - NeuronConfig) # Create a model instance. model = NeuronCasualLM(model_config.hf_config) - continuous_batching_config = ContinuousBatchingConfig( - batch_size_for_shared_caches=scheduler_config.max_num_seqs) - neuron_config = NeuronConfig( - continuous_batching=continuous_batching_config) + default_neuron_config_args = _get_default_neuron_config( + model_config, parallel_config, scheduler_config) + + neuron_config = _get_neuron_config_after_override( + default_neuron_config_args, model_config.override_neuron_config) context_length_estimates = _get_buckets("NEURON_CONTEXT_LENGTH_BUCKETS", [scheduler_config.max_model_len]) diff --git a/vllm/worker/neuron_model_runner.py b/vllm/worker/neuron_model_runner.py index f3defffdfa520..0cf7445d4388d 100644 --- a/vllm/worker/neuron_model_runner.py +++ b/vllm/worker/neuron_model_runner.py @@ -1,4 +1,5 @@ from dataclasses import dataclass +from importlib.util import find_spec from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import torch @@ -76,9 +77,14 @@ def __init__( self.model: nn.Module # initialize after load_model. def load_model(self) -> None: - self.model = get_neuron_model(self.model_config, - parallel_config=self.parallel_config, - scheduler_config=self.scheduler_config) + if find_spec("transformers_neuronx") is not None: + self.model = get_neuron_model( + self.model_config, + parallel_config=self.parallel_config, + scheduler_config=self.scheduler_config) + else: + raise NotImplementedError( + "Supports only Transformer-NeuronX based models.") def _prepare_prompt( self,