forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
215 lines (172 loc) · 7.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import time
from typing import List, Optional
from typing import Sequence as GenericSequence
from typing import Tuple
from vllm import SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sequence import Logprob, Sequence, SequenceGroup
def create_dummy_prompt(
request_id: str,
prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
use_beam_search: bool = False,
best_of: int = 1,
prompt_tokens: Optional[List[int]] = None,
min_tokens: int = 0,
max_tokens: int = 16,
) -> Tuple[Sequence, SequenceGroup]:
if not block_size:
block_size = prompt_length
if prompt_tokens is None:
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size".
prompt_tokens = list(range(prompt_length))
prompt_str = " ".join([str(t) for t in prompt_tokens])
prompt = Sequence(int(request_id),
inputs={
"prompt": prompt_str,
"prompt_token_ids": prompt_tokens,
},
block_size=block_size)
seq_group = SequenceGroup(request_id=request_id,
seqs=[prompt],
arrival_time=time.time(),
sampling_params=SamplingParams(
use_beam_search=use_beam_search,
best_of=best_of,
max_tokens=max_tokens,
min_tokens=min_tokens),
lora_request=lora_request)
return prompt, seq_group
def create_dummy_prompt_encoder_decoder(
request_id: str,
decoder_prompt_length: int,
encoder_prompt_length: int,
block_size: Optional[int] = None,
lora_request: Optional[LoRARequest] = None,
use_beam_search: bool = False,
best_of: int = 1,
) -> Tuple[Sequence, Sequence, SequenceGroup]:
if not block_size:
block_size = decoder_prompt_length
# Create dummy prompt sequence with tokens 0...block_size-1
# and prompt "0 ... block_size". Note that the prompt string
# doesn't actually match the tokens
decoder_prompt_tokens = list(range(decoder_prompt_length))
decoder_prompt_str = " ".join([str(t) for t in decoder_prompt_tokens])
encoder_prompt_tokens = list(reversed(list(range(encoder_prompt_length))))
encoder_prompt_str = " ".join([str(t) for t in encoder_prompt_tokens])
inputs = {
"prompt": decoder_prompt_str,
"prompt_token_ids": decoder_prompt_tokens,
"encoder_prompt": encoder_prompt_str,
"encoder_prompt_token_ids": encoder_prompt_tokens,
"multi_modal_data": None,
}
decoder_prompt = Sequence(int(request_id),
inputs=inputs,
block_size=block_size,
from_decoder_prompt=True)
encoder_prompt = Sequence(int(request_id),
inputs=inputs,
block_size=block_size,
from_decoder_prompt=False)
seq_group = SequenceGroup(request_id=request_id,
seqs=[decoder_prompt],
sampling_params=SamplingParams(
use_beam_search=use_beam_search,
best_of=best_of),
arrival_time=time.time(),
lora_request=lora_request,
encoder_seq=encoder_prompt)
return decoder_prompt, encoder_prompt, seq_group
def create_seq_group(
seq_prompt_len: int = 1024,
seq_output_lens: GenericSequence[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
seqs: List[Sequence] = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
seq = Sequence(
seq_id=seq_id_start + seq_id_offset,
inputs={"prompt_token_ids": prompt_token_ids},
block_size=16,
)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
seq_group = SequenceGroup(
request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
)
return seq_group
def create_seq_group_encoder_decoder(
seq_prompt_len: int = 1024,
seq_output_lens: GenericSequence[int] = (128, ),
request_id: str = '0',
seq_id_start: int = 0,
sampling_params: Optional[SamplingParams] = None) -> SequenceGroup:
assert len(seq_output_lens) > 0
if sampling_params is None:
sampling_params = SamplingParams()
prompt_token_ids = [0] * seq_prompt_len
inputs = {
"prompt": "",
"prompt_token_ids": prompt_token_ids,
"encoder_prompt": "",
"encoder_prompt_token_ids": prompt_token_ids,
"multi_modal_data": None,
}
seqs = []
for seq_id_offset, output_len in enumerate(seq_output_lens):
# Construct decoder input sequences
seq = Sequence(seq_id=seq_id_start + seq_id_offset,
inputs=inputs,
block_size=16,
from_decoder_prompt=True)
for i in range(output_len):
seq.append_token_id(
token_id=i,
logprobs={i: Logprob(0.0)},
)
seqs.append(seq)
# Encoder input sequence
encoder_seq = Sequence(seq_id=seq_id_start + len(seq_output_lens),
inputs=inputs,
block_size=16,
from_decoder_prompt=False)
return SequenceGroup(request_id=request_id,
seqs=seqs,
sampling_params=sampling_params,
arrival_time=time.time(),
encoder_seq=encoder_seq)
def round_up_to_next_block(seq_len: int, block_size: int) -> int:
return (seq_len + block_size - 1) // block_size
# Helper functions for scheduler tests
def get_sequence_groups(scheduler_output):
return [s.seq_group for s in scheduler_output.scheduled_seq_groups]
def append_new_token(out, token_id: int):
seq_groups = get_sequence_groups(out)
for seq_group in seq_groups:
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})
def schedule_and_update_computed_tokens(scheduler):
metas, out, _ = scheduler.schedule()
for s, meta in zip(out.scheduled_seq_groups, metas):
s.seq_group.update_num_computed_tokens(meta.token_chunk_size)
return metas, out
def append_new_token_seq_group(token_chunk_size, seq_group, token_id: int):
seq_group.update_num_computed_tokens(token_chunk_size)
for seq in seq_group.get_seqs():
seq.append_token_id(token_id, {token_id: Logprob(token_id)})