forked from huggingface/transformers
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest_flax_auto.py
78 lines (63 loc) · 3 KB
/
test_flax_auto.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class FlaxAutoModelTest(unittest.TestCase):
@slow
def test_bert_from_pretrained(self):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(model_name):
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = FlaxAutoModel.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, FlaxBertModel)
@slow
def test_roberta_from_pretrained(self):
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(model_name):
config = AutoConfig.from_pretrained(model_name)
self.assertIsNotNone(config)
self.assertIsInstance(config, BertConfig)
model = FlaxAutoModel.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertIsInstance(model, FlaxRobertaModel)
@slow
def test_bert_jax_jit(self):
for model_name in ["bert-base-cased", "bert-large-uncased"]:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = FlaxBertModel.from_pretrained(model_name)
tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)
@jax.jit
def eval(**kwargs):
return model(**kwargs)
eval(**tokens).block_until_ready()
@slow
def test_roberta_jax_jit(self):
for model_name in ["roberta-base", "roberta-large"]:
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = FlaxRobertaModel.from_pretrained(model_name)
tokens = tokenizer("Do you support jax jitted function?", return_tensors=TensorType.JAX)
@jax.jit
def eval(**kwargs):
return model(**kwargs)
eval(**tokens).block_until_ready()