This repository has been archived by the owner on Oct 11, 2024. It is now read-only.
forked from vllm-project/vllm
-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Speculative decoding 6/9] Integrate speculative decoding with LLMEng…
…ine (vllm-project#3894)
- Loading branch information
1 parent
2986e80
commit 945a6b7
Showing
31 changed files
with
1,347 additions
and
407 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
import random | ||
from unittest.mock import MagicMock | ||
|
||
import pytest | ||
from transformers import PreTrainedTokenizer | ||
|
||
from tests.core.utils import create_seq_group | ||
from vllm.core.scheduler import Scheduler | ||
from vllm.engine.output_processor.multi_step import MultiStepOutputProcessor | ||
from vllm.engine.output_processor.stop_checker import StopChecker | ||
from vllm.sampling_params import SamplingParams | ||
from vllm.sequence import (Logprob, SequenceGroupOutput, SequenceOutput, | ||
SequenceStatus) | ||
from vllm.transformers_utils.detokenizer import Detokenizer | ||
from vllm.utils import Counter | ||
|
||
|
||
@pytest.mark.parametrize("seq_output_len", [128]) | ||
@pytest.mark.parametrize("num_new_tokens", [1, 12]) | ||
@pytest.mark.skip_global_cleanup | ||
def test_appends_token_ids(num_new_tokens: int, seq_output_len: int): | ||
"""Verify multi-step decoding appends token ids correctly. | ||
We append token ids and verify all the token ids were appended correctly. | ||
Note that ignore_eos=True. | ||
""" | ||
detokenizer = MagicMock(spec=Detokenizer) | ||
scheduler = MagicMock(spec=Scheduler) | ||
stop_checker = MagicMock(spec=StopChecker) | ||
seq_counter = Counter() | ||
|
||
output_processor = MultiStepOutputProcessor( | ||
detokenizer=detokenizer, | ||
scheduler=scheduler, | ||
seq_counter=seq_counter, | ||
get_tokenizer_for_seq=lambda _: mock_tokenizer(), | ||
stop_checker=stop_checker, | ||
) | ||
|
||
seq_group = create_seq_group( | ||
seq_prompt_len=1024, | ||
seq_output_lens=[seq_output_len], | ||
sampling_params=SamplingParams(max_tokens=seq_output_len + | ||
num_new_tokens, | ||
ignore_eos=True), | ||
) | ||
|
||
seq = seq_group.get_seqs()[0] | ||
seq.status = SequenceStatus.RUNNING | ||
|
||
new_token_ids = list(range(num_new_tokens)) | ||
|
||
outputs = [ | ||
SequenceGroupOutput( | ||
samples=[ | ||
SequenceOutput( | ||
parent_seq_id=seq.seq_id, | ||
output_token=output_token, | ||
logprobs={output_token: Logprob(0.0)}, | ||
) | ||
], | ||
prompt_logprobs=None, | ||
) for output_token in new_token_ids | ||
] | ||
|
||
assert seq.get_token_ids()[-len(new_token_ids):] != new_token_ids | ||
output_processor.process_outputs(seq_group, outputs) | ||
assert seq.get_token_ids()[-len(new_token_ids):] == new_token_ids | ||
|
||
|
||
@pytest.mark.parametrize("seq_prompt_len", [1024]) | ||
@pytest.mark.parametrize("seq_output_len", [128]) | ||
@pytest.mark.parametrize("num_new_tokens", [5, 6, 7, 8]) | ||
@pytest.mark.parametrize("max_tokens", [128 + 3]) | ||
@pytest.mark.skip_global_cleanup | ||
def test_respects_max_tokens(num_new_tokens: int, seq_prompt_len: int, | ||
seq_output_len: int, max_tokens: int): | ||
"""Verify tokens after max_tokens are dropped and not appended to the | ||
sequence. | ||
""" | ||
detokenizer = MagicMock(spec=Detokenizer) | ||
scheduler = MagicMock(spec=Scheduler) | ||
stop_checker = MagicMock(spec=StopChecker) | ||
seq_counter = Counter() | ||
|
||
output_processor = MultiStepOutputProcessor( | ||
detokenizer=detokenizer, | ||
scheduler=scheduler, | ||
seq_counter=seq_counter, | ||
get_tokenizer_for_seq=lambda _: mock_tokenizer(), | ||
stop_checker=stop_checker, | ||
) | ||
|
||
seq_group = create_seq_group( | ||
seq_prompt_len=seq_prompt_len, | ||
seq_output_lens=[seq_output_len], | ||
sampling_params=SamplingParams(max_tokens=max_tokens, ), | ||
) | ||
|
||
seq = seq_group.get_seqs()[0] | ||
seq.status = SequenceStatus.RUNNING | ||
|
||
new_token_ids = list(range(num_new_tokens)) | ||
|
||
outputs = [ | ||
SequenceGroupOutput( | ||
samples=[ | ||
SequenceOutput( | ||
parent_seq_id=seq.seq_id, | ||
output_token=output_token, | ||
logprobs={output_token: Logprob(0.0)}, | ||
) | ||
], | ||
prompt_logprobs=None, | ||
) for output_token in new_token_ids | ||
] | ||
|
||
assert seq.get_len() == seq_prompt_len + seq_output_len | ||
output_processor.process_outputs(seq_group, outputs) | ||
|
||
# Expect the processed sequence to not go over max tokens in len. | ||
assert seq.get_len() == seq_prompt_len + max_tokens | ||
|
||
# Expect the correct tokens were appended. | ||
expected_appended_tokens = new_token_ids[:max_tokens - seq_output_len] | ||
assert seq.get_token_ids( | ||
)[-len(expected_appended_tokens):] == expected_appended_tokens | ||
|
||
|
||
@pytest.mark.parametrize("seq_prompt_len", [1024]) | ||
@pytest.mark.parametrize("seq_output_len", [128]) | ||
@pytest.mark.parametrize("num_new_tokens", [12]) | ||
@pytest.mark.parametrize("seed", list(range(6))) | ||
@pytest.mark.skip_global_cleanup | ||
def test_respects_eos_token_id(num_new_tokens: int, seq_prompt_len: int, | ||
seq_output_len: int, seed: int): | ||
"""Verify the eos token id is included in the sequence, but subsequent | ||
tokens are dropped (not appended to sequence). | ||
""" | ||
random.seed(seed) | ||
detokenizer = MagicMock(spec=Detokenizer) | ||
scheduler = MagicMock(spec=Scheduler) | ||
stop_checker = MagicMock(spec=StopChecker) | ||
seq_counter = Counter() | ||
|
||
eos_token_id = 100 | ||
|
||
output_processor = MultiStepOutputProcessor( | ||
detokenizer=detokenizer, | ||
scheduler=scheduler, | ||
seq_counter=seq_counter, | ||
get_tokenizer_for_seq=lambda _: mock_tokenizer(eos_token_id), | ||
stop_checker=stop_checker, | ||
) | ||
|
||
seq_group = create_seq_group( | ||
seq_prompt_len=seq_prompt_len, | ||
seq_output_lens=[seq_output_len], | ||
sampling_params=SamplingParams( | ||
# Ensure enough space. | ||
max_tokens=seq_output_len + num_new_tokens, ), | ||
) | ||
|
||
seq = seq_group.get_seqs()[0] | ||
seq.status = SequenceStatus.RUNNING | ||
|
||
new_token_ids = list(range(num_new_tokens)) | ||
assert eos_token_id not in new_token_ids | ||
eos_index = random.randint(0, len(new_token_ids) - 1) | ||
new_token_ids[eos_index] = eos_token_id | ||
|
||
outputs = [ | ||
SequenceGroupOutput( | ||
samples=[ | ||
SequenceOutput( | ||
parent_seq_id=seq.seq_id, | ||
output_token=output_token, | ||
logprobs={output_token: Logprob(0.0)}, | ||
) | ||
], | ||
prompt_logprobs=None, | ||
) for output_token in new_token_ids | ||
] | ||
|
||
assert seq.get_len() == seq_prompt_len + seq_output_len | ||
output_processor.process_outputs(seq_group, outputs) | ||
|
||
# Expect the processed sequence to not go beyond provided eos. | ||
assert seq.get_len() == seq_prompt_len + seq_output_len + (eos_index + 1) | ||
|
||
# Expect the correct tokens were appended. | ||
expected_appended_tokens = new_token_ids[:eos_index + 1] | ||
assert seq.get_token_ids( | ||
)[-len(expected_appended_tokens):] == expected_appended_tokens | ||
|
||
|
||
@pytest.mark.parametrize("seq_prompt_len", [1024]) | ||
@pytest.mark.parametrize("seq_output_len", [128]) | ||
@pytest.mark.parametrize("num_new_tokens", [12]) | ||
@pytest.mark.parametrize("seed", list(range(6))) | ||
@pytest.mark.skip_global_cleanup | ||
def test_ignores_eos_token_id(num_new_tokens: int, seq_prompt_len: int, | ||
seq_output_len: int, seed: int): | ||
"""When sampling parameters dictate that we should ignore the eos token id, | ||
ensure all token ids are appended even if the eos token id is emitted. | ||
""" | ||
random.seed(seed) | ||
detokenizer = MagicMock(spec=Detokenizer) | ||
scheduler = MagicMock(spec=Scheduler) | ||
stop_checker = MagicMock(spec=StopChecker) | ||
seq_counter = Counter() | ||
|
||
eos_token_id = 100 | ||
|
||
output_processor = MultiStepOutputProcessor( | ||
detokenizer=detokenizer, | ||
scheduler=scheduler, | ||
seq_counter=seq_counter, | ||
get_tokenizer_for_seq=lambda _: mock_tokenizer(eos_token_id), | ||
stop_checker=stop_checker, | ||
) | ||
|
||
seq_group = create_seq_group( | ||
seq_prompt_len=seq_prompt_len, | ||
seq_output_lens=[seq_output_len], | ||
sampling_params=SamplingParams( | ||
# Ensure enough space. | ||
max_tokens=seq_output_len + num_new_tokens, | ||
ignore_eos=True, | ||
), | ||
) | ||
|
||
seq = seq_group.get_seqs()[0] | ||
seq.status = SequenceStatus.RUNNING | ||
|
||
new_token_ids = list(range(num_new_tokens)) | ||
assert eos_token_id not in new_token_ids | ||
eos_index = random.randint(0, len(new_token_ids) - 1) | ||
new_token_ids[eos_index] = eos_token_id | ||
|
||
outputs = [ | ||
SequenceGroupOutput( | ||
samples=[ | ||
SequenceOutput( | ||
parent_seq_id=seq.seq_id, | ||
output_token=output_token, | ||
logprobs={output_token: Logprob(0.0)}, | ||
) | ||
], | ||
prompt_logprobs=None, | ||
) for output_token in new_token_ids | ||
] | ||
|
||
assert seq.get_len() == seq_prompt_len + seq_output_len | ||
output_processor.process_outputs(seq_group, outputs) | ||
|
||
# Expect the processed sequence to go beyond eos. | ||
assert seq.get_len() == seq_prompt_len + seq_output_len + num_new_tokens | ||
|
||
# Expect the correct tokens were appended. | ||
expected_appended_tokens = new_token_ids[:seq_output_len + num_new_tokens - | ||
seq_output_len] | ||
assert seq.get_token_ids( | ||
)[-len(expected_appended_tokens):] == expected_appended_tokens | ||
|
||
|
||
def mock_tokenizer(eos_token_id=1000): | ||
tokenizer = MagicMock(spec=PreTrainedTokenizer) | ||
tokenizer.eos_token_id = eos_token_id | ||
return tokenizer |
Oops, something went wrong.