|
| 1 | +import logging |
| 2 | +from pathlib import Path |
| 3 | +from typing import Any, Dict, List, TypedDict |
| 4 | + |
| 5 | +import lm_eval |
| 6 | +import numpy |
| 7 | +import pytest |
| 8 | +import torch |
| 9 | +import yaml |
| 10 | + |
| 11 | +from tests.utils.server import ServerContext |
| 12 | + |
| 13 | + |
| 14 | +class Metric(TypedDict): |
| 15 | + name: str |
| 16 | + value: float |
| 17 | + |
| 18 | + |
| 19 | +class Task(TypedDict): |
| 20 | + name: str |
| 21 | + metrics: List[Metric] |
| 22 | + |
| 23 | + |
| 24 | +# to support python3.8 typing prior to adding `Required`/`NotRequired`, this class |
| 25 | +# stores the optional keys and the `EvalDefinition` subclass inherits those alongside |
| 26 | +# the required keys it defines. |
| 27 | +class EvalTaskDefinitionOpts(TypedDict, total=False): |
| 28 | + enable_tensor_parallel: bool |
| 29 | + extra_args: Dict[str, Any] |
| 30 | + |
| 31 | + |
| 32 | +class EvalTaskDefinition(EvalTaskDefinitionOpts): |
| 33 | + model_name: str |
| 34 | + tasks: List[Task] |
| 35 | + |
| 36 | + |
| 37 | +TEST_DATA_FILE = Path(__file__).parent / "lm-eval-tasks.yaml" |
| 38 | +TEST_DATA = yaml.safe_load(TEST_DATA_FILE.read_text(encoding="utf-8")) |
| 39 | +TEST_DATA: List[EvalTaskDefinition] = [ |
| 40 | + pytest.param(eval_def, id=eval_def["model_name"]) for eval_def in TEST_DATA |
| 41 | +] |
| 42 | + |
| 43 | + |
| 44 | +@pytest.mark.parametrize("eval_data", TEST_DATA) |
| 45 | +def test_lm_eval_correctness( |
| 46 | + eval_data: EvalTaskDefinition, |
| 47 | + logger: logging.Logger, |
| 48 | + monkeypatch: pytest.MonkeyPatch, |
| 49 | +): |
| 50 | + monkeypatch.setenv("TOKENIZERS_PARALLELISM", "false") |
| 51 | + monkeypatch.setenv("OPENAI_API_KEY", "dummy") |
| 52 | + |
| 53 | + model_name = eval_data["model_name"] |
| 54 | + logger.info("building server startup args") |
| 55 | + vllm_args = {"--model": model_name, "--disable-log-requests": None} |
| 56 | + |
| 57 | + if eval_data.get("enable_tensor_parallel") is True: |
| 58 | + tp = torch.cuda.device_count() |
| 59 | + logger.info("Enabling tensor parallelism with %d devices", tp) |
| 60 | + vllm_args["--tensor-parallel-size"] = tp |
| 61 | + |
| 62 | + if extra_args := eval_data.get("extra_args"): |
| 63 | + vllm_args.update(extra_args) |
| 64 | + |
| 65 | + openai_args = ",".join( |
| 66 | + [ |
| 67 | + f"model={model_name}", |
| 68 | + "tokenizer_backend=huggingface", |
| 69 | + "base_url=http://localhost:8000/v1", |
| 70 | + ] |
| 71 | + ) |
| 72 | + |
| 73 | + logger.info("launching server") |
| 74 | + with ServerContext(vllm_args, logger=logger) as _: |
| 75 | + task_names = [t["name"] for t in eval_data["tasks"]] |
| 76 | + logger.info("getting results for task_names=%s", task_names) |
| 77 | + results = lm_eval.simple_evaluate( |
| 78 | + model="local-completions", |
| 79 | + model_args=openai_args, |
| 80 | + tasks=task_names, |
| 81 | + batch_size=64, |
| 82 | + ) |
| 83 | + |
| 84 | + logger.info("clearing torch cache") |
| 85 | + lm_eval.models.utils.clear_torch_cache() |
| 86 | + |
| 87 | + for task in eval_data["tasks"]: |
| 88 | + logger.info("checking metrics for task=%s", task["name"]) |
| 89 | + for metric in task["metrics"]: |
| 90 | + ground_truth = metric["value"] |
| 91 | + measured_value = results["results"][task["name"]][metric["name"]] |
| 92 | + logger.info( |
| 93 | + "%s %s:\nground_truth=%s measured_value=%s", |
| 94 | + task["name"], |
| 95 | + metric["name"], |
| 96 | + ground_truth, |
| 97 | + measured_value, |
| 98 | + ) |
| 99 | + |
| 100 | + # Metrics must be within 1% of the larger of the two values. This |
| 101 | + # corresponds to a 99% accuracy threshold. |
| 102 | + assert numpy.isclose(ground_truth, measured_value, rtol=0.01) |
0 commit comments