Skip to content

Commit b1a9d45

Browse files
committed
set count_include_pad for avg_pool2d in TensorRT wrapper
1 parent 1e737ee commit b1a9d45

File tree

2 files changed

+74
-0
lines changed

2 files changed

+74
-0
lines changed

src/contrib/subgraph/tensorrt_executor.cc

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -587,6 +587,17 @@ void AddPooling(
587587
} else {
588588
network->setPoolingOutputDimensionsFormula(nullptr);
589589
}
590+
if (!is_global_pool) {
591+
if (nodes[nid].attrs.count("count_include_pad")) {
592+
if (nodes[nid].attrs.at("count_include_pad") == "True") {
593+
pool_layer->setAverageCountExcludesPadding(false);
594+
} else {
595+
pool_layer->setAverageCountExcludesPadding(true);
596+
}
597+
} else {
598+
pool_layer->setAverageCountExcludesPadding(true);
599+
}
600+
}
590601
nid2layer->emplace(nid, pool_layer);
591602
}
592603

Lines changed: 63 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,63 @@
1+
# Licensed to the Apache Software Foundation (ASF) under one
2+
# or more contributor license agreements. See the NOTICE file
3+
# distributed with this work for additional information
4+
# regarding copyright ownership. The ASF licenses this file
5+
# to you under the Apache License, Version 2.0 (the
6+
# "License"); you may not use this file except in compliance
7+
# with the License. You may obtain a copy of the License at
8+
#
9+
# http://www.apache.org/licenses/LICENSE-2.0
10+
#
11+
# Unless required by applicable law or agreed to in writing,
12+
# software distributed under the License is distributed on an
13+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
14+
# KIND, either express or implied. See the License for the
15+
# specific language governing permissions and limitations
16+
# under the License.
17+
18+
import numpy as np
19+
import mxnet as mx
20+
from mxnet import gluon
21+
import nnvm
22+
import tvm
23+
from tvm.contrib import graph_runtime
24+
25+
26+
def test_avg_pool2d():
27+
28+
# Generate the data
29+
np.random.seed(0)
30+
input_shape = [1, 1, 28, 28]
31+
output_shape = [1, 10]
32+
data = np.random.random(input_shape).astype('float32')
33+
34+
# Baseline model in MXNet
35+
net = gluon.nn.HybridSequential()
36+
with net.name_scope():
37+
net.add(gluon.nn.AvgPool2D(pool_size=3, strides=1, padding=1))
38+
net.add(gluon.nn.Dense(10))
39+
net.collect_params().initialize(mx.init.Xavier(), ctx=mx.cpu())
40+
net.hybridize()
41+
baseline_input = mx.nd.array(data, ctx=mx.cpu())
42+
baseline_output = net(baseline_input).asnumpy()
43+
44+
# Compiled model
45+
sym, params = nnvm.frontend.from_mxnet(net)
46+
target = tvm.target.cuda()
47+
with nnvm.compiler.build_config(opt_level=3, ext_accel='tensorrt'):
48+
graph, lib, params = nnvm.compiler.build(sym, target,
49+
shape={'data': input_shape},
50+
params=params)
51+
compiled_model = graph_runtime.create(graph, lib, tvm.gpu())
52+
compiled_input = tvm.nd.array(data, ctx=tvm.gpu())
53+
compiled_model.set_input('data', compiled_input)
54+
compiled_model.set_input(**params)
55+
compiled_model.run()
56+
compiled_output = compiled_model.get_output(0, tvm.nd.empty(output_shape)).asnumpy()
57+
58+
# Compare outputs
59+
np.testing.assert_almost_equal(baseline_output, compiled_output, decimal=3)
60+
61+
62+
if __name__ == '__main__':
63+
test_avg_pool2d()

0 commit comments

Comments
 (0)