Skip to content

Latest commit

 

History

History
executable file
·
165 lines (120 loc) · 11.5 KB

README.md

File metadata and controls

executable file
·
165 lines (120 loc) · 11.5 KB
 

CI CPU testing

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and evolution on anonymized client datasets. All code and models are under active development, and are subject to modification or deletion without notice. Use at your own risk.

** GPU Speed measures end-to-end time per image averaged over 5000 COCO val2017 images using a V100 GPU with batch size 32, and includes image preprocessing, PyTorch FP16 inference, postprocessing and NMS. EfficientDet data from google/automl at batch size 8.

  • January 5, 2021: v4.0 release: nn.SiLU() activations, Weights & Biases logging, PyTorch Hub integration.
  • August 13, 2020: v3.0 release: nn.Hardswish() activations, data autodownload, native AMP.
  • July 23, 2020: v2.0 release: improved model definition, training and mAP.
  • June 22, 2020: PANet updates: new heads, reduced parameters, improved speed and mAP 364fcfd.
  • June 19, 2020: FP16 as new default for smaller checkpoints and faster inference d4c6674.

Pretrained Checkpoints

Model size APval APtest AP50 SpeedV100 FPSV100 params GFLOPS
YOLOv5s 640 36.8 36.8 55.6 2.2ms 455 7.3M 17.0
YOLOv5m 640 44.5 44.5 63.1 2.9ms 345 21.4M 51.3
YOLOv5l 640 48.1 48.1 66.4 3.8ms 264 47.0M 115.4
YOLOv5x 640 50.1 50.1 68.7 6.0ms 167 87.7M 218.8
YOLOv5x + TTA 832 51.9 51.9 69.6 24.9ms 40 87.7M 1005.3

** APtest denotes COCO test-dev2017 server results, all other AP results denote val2017 accuracy.
** All AP numbers are for single-model single-scale without ensemble or TTA. Reproduce mAP by python test.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65
** SpeedGPU averaged over 5000 COCO val2017 images using a GCP n1-standard-16 V100 instance, and includes image preprocessing, FP16 inference, postprocessing and NMS. NMS is 1-2ms/img. Reproduce speed by python test.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45
** All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). ** Test Time Augmentation (TTA) runs at 3 image sizes. Reproduce TTA by python test.py --data coco.yaml --img 832 --iou 0.65 --augment

Requirements

Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install run:

$ pip install -r requirements.txt

Tutorials

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Inference

detect.py runs inference on a variety of sources, downloading models automatically from the latest YOLOv5 release and saving results to runs/detect.

$ python detect.py --source 0  # webcam
                            file.jpg  # image 
                            file.mp4  # video
                            path/  # directory
                            path/*.jpg  # glob
                            rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa  # rtsp stream
                            rtmp://192.168.1.105/live/test  # rtmp stream
                            http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8  # http stream

To run inference on example images in data/images:

$ python detect.py --source data/images --weights yolov5s.pt --conf 0.25

Namespace(agnostic_nms=False, augment=False, classes=None, conf_thres=0.25, device='', img_size=640, iou_thres=0.45, save_conf=False, save_dir='runs/detect', save_txt=False, source='data/images/', update=False, view_img=False, weights=['yolov5s.pt'])
Using torch 1.7.0+cu101 CUDA:0 (Tesla V100-SXM2-16GB, 16130MB)

Downloading https://github.com/ultralytics/yolov5/releases/download/v3.1/yolov5s.pt to yolov5s.pt... 100%|██████████████| 14.5M/14.5M [00:00<00:00, 21.3MB/s]

Fusing layers... 
Model Summary: 232 layers, 7459581 parameters, 0 gradients
image 1/2 data/images/bus.jpg: 640x480 4 persons, 1 buss, 1 skateboards, Done. (0.012s)
image 2/2 data/images/zidane.jpg: 384x640 2 persons, 2 ties, Done. (0.012s)
Results saved to runs/detect/exp
Done. (0.113s)

To use 2nd Stage Image classifier

In detect.py, make the following changes:

  1. Please add mean and standard deviation (std) based on the dataset of image classifier (line 27-28).
  2. Also mention paths of image classifier checkpoint (line 89) and list of class names for image classifier (72).
  3. Mention the super class and subclass (line 76 - line 85). Currently the code is configured to have either one class that is also the class to be further classified into sub classes by image classifier OR user can mention index of super class and subclass if they are different. Code can be improvised for multiple super class and sub classes. Changes will only be needed in detect.py.

After making the above changes, use the following command:

$ python yolov5/detect.py --weights <Path to YOLO.pt model> --conf 0.4 --iou-thres 0.4 --source <Image or video path> --second-classifier

PyTorch Hub

To run batched inference with YOLOv5 and PyTorch Hub:

import torch
from PIL import Image

# Model
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)

# Images
img1 = Image.open('zidane.jpg')
img2 = Image.open('bus.jpg')
imgs = [img1, img2]  # batched list of images

# Inference
result = model(imgs)

Training

Run commands below to reproduce results on COCO dataset (dataset auto-downloads on first use). Training times for YOLOv5s/m/l/x are 2/4/6/8 days on a single V100 (multi-GPU times faster). Use the largest --batch-size your GPU allows (batch sizes shown for 16 GB devices).

$ python train.py --data coco.yaml --cfg yolov5s.yaml --weights '' --batch-size 64
                                         yolov5m                                40
                                         yolov5l                                24
                                         yolov5x                                16

Citation

DOI

About Us

Ultralytics is a U.S.-based particle physics and AI startup with over 6 years of expertise supporting government, academic and business clients. We offer a wide range of vision AI services, spanning from simple expert advice up to delivery of fully customized, end-to-end production solutions, including:

  • Cloud-based AI systems operating on hundreds of HD video streams in realtime.
  • Edge AI integrated into custom iOS and Android apps for realtime 30 FPS video inference.
  • Custom data training, hyperparameter evolution, and model exportation to any destination.

For business inquiries and professional support requests please visit us at https://www.ultralytics.com.

Contact

Issues should be raised directly in the repository. For business inquiries or professional support requests please visit https://www.ultralytics.com or email Glenn Jocher at glenn.jocher@ultralytics.com.