-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter5_intuition.lyx
752 lines (577 loc) · 12.9 KB
/
Chapter5_intuition.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass article
\use_default_options true
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding auto
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Section*
5.6 Normal Distribution
\end_layout
\begin_layout Subsection*
Exercise
\end_layout
\begin_layout Standard
17.
Suppose
\begin_inset Formula $\log(X)\sim N(\mu,\sigma)$
\end_inset
.
Find Distribution of
\begin_inset Formula $X$
\end_inset
.
\begin_inset Formula $Y=r(X)$
\end_inset
\end_layout
\begin_layout Standard
\series bold
The Change of Variables Formula
\end_layout
\begin_layout Standard
Suppose that r is strictly increasing on
\begin_inset Formula $S$
\end_inset
.
for
\begin_inset Formula $y\in T$
\end_inset
,
\end_layout
\begin_layout Standard
a.
\begin_inset Formula $G(y)=F[r^{-1}(y)]$
\end_inset
\end_layout
\begin_layout Standard
b.
\begin_inset Formula $g(y)=f[r^{-1}(y)]\frac{d}{dy}r^{-1}(y)$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset Formula $y=r^{-1}(x)=log(x)$
\end_inset
, so
\begin_inset Formula $x=r(y)=e^{y}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $f(x)=g(r^{-1}(x))\frac{dr^{-1}(x)}{dx}=....$
\end_inset
\end_layout
\begin_layout Paragraph*
18.
\series bold
Cauchy Distribution
\begin_inset Formula $f(x)=\frac{1}{\pi(1+x^{2})}$
\end_inset
\series default
for
\begin_inset Formula $-\infty<x<\infty$
\end_inset
\end_layout
\begin_layout Section*
5.8 Gamma Distribution
\end_layout
\begin_layout Subsection*
Intuition
\end_layout
\begin_layout Standard
To Prove
\series bold
Theorem 5.7.10,
\series default
authors uses same-formular for
\begin_inset Formula $F(X>t)$
\end_inset
to prove two distribution is same exponential distribution .
\series bold
How can understand this method ?
\end_layout
\begin_layout Standard
In
\series bold
Theorem 5.7.10
\series default
in explanation part, authors say that : Futhermore, regardless of the time
at which the first bulb failed or which bulb failed first, it follows from
memoryless property of the exponential distribution that the distribution
of the remaining lifetime of each of the other
\begin_inset Formula $n-1$
\end_inset
bulbs is still the exponential distribution with parameter
\begin_inset Formula $\beta$
\end_inset
(
\series bold
why?
\series default
Because like proving in theorem 5.7.9,
\series bold
\begin_inset Formula $F(X2=X1+t|X1)=e^{-\beta t}>e^{-\beta(X1+t)}=F(X2=X1+t)$
\end_inset
(
\series default
it shows that when we know after
\begin_inset Formula $X1$
\end_inset
time unit, bulb is not failed then bulb will be fail in
\begin_inset Formula $X2=X1+t$
\end_inset
\series bold
\series default
is bigger than when we dont know event
\begin_inset Formula $X1$
\end_inset
occurs)
\series bold
~
\series default
Exponential Distribution, especialy, it doesn't depend on
\begin_inset Formula $X1$
\end_inset
\series bold
)
\series default
.
\emph on
In other words, the situation is the same as it would be if we were starting
the test over again from time
\begin_inset Formula $t=0$
\end_inset
with
\begin_inset Formula $n-1$
\end_inset
new bulbs
\emph default
.
\series bold
What is the point ?
\end_layout
\begin_layout Standard
\series bold
Answer:
\end_layout
\begin_layout Standard
\series bold
Note:
\series default
This memoryless property will not strictly be satisfied in all practical
problems.
For example, suppose that
\begin_inset Formula $X$
\end_inset
is the length of time for which a light bulb will burn before it fails.
The length of time for which the bulb can be expected to contunue to burn
in the future will depend on the length of time for which it has been burning
in the past.
\end_layout
\begin_layout Standard
From Theorem
\series bold
5.7.9
\series default
to prove that we suppose that
\begin_inset Formula $n$
\end_inset
bulb, lifetime is
\begin_inset Formula $X1,X2,...Xn$
\end_inset
(sorted) if knowned
\begin_inset Formula $X1$
\end_inset
is failed, then
\begin_inset Formula $(n-1)$
\end_inset
remaining bulb is still exponential distribution with parameter
\begin_inset Formula $\beta$
\end_inset
.
We have
\begin_inset Formula $P(X\geq t+h|X\geq t)=P(X\geq h)$
\end_inset
.
\begin_inset Formula $X1=t$
\end_inset
, so event
\begin_inset Formula $X>t\Leftrightarrow X>X1$
\end_inset
, or
\begin_inset Formula $X1$
\end_inset
fail, similar with
\begin_inset Formula $X2$
\end_inset
,
\begin_inset Formula $X2=t+h$
\end_inset
, so
\begin_inset Formula $X>t+h$
\end_inset
is event that second bulb is failed.
Like proved,
\begin_inset Formula $X2,X3,..Xn$
\end_inset
is still exponential distribution with parameter
\begin_inset Formula $\beta$
\end_inset
.
But if want to know how lenght of time for bulb will burn when it fails,
we need to apply above exponential distribution for time
\begin_inset Formula $-$
\end_inset
time have burned in the past.
\end_layout
\begin_layout Standard
\series bold
Intuition about Memoryless property :
\series default
\emph on
In exponential distribution
\begin_inset Formula $\beta$
\end_inset
, Probability of starting duration time
\begin_inset Formula $t+d$
\end_inset
, known already starting duration time
\begin_inset Formula $t$
\end_inset
is exponential distribution with parameter
\begin_inset Formula $\beta$
\end_inset
from time
\begin_inset Formula $0$
\end_inset
and duration is
\begin_inset Formula $d$
\end_inset
\emph default
.
\end_layout
\begin_layout Standard
To clear this point, we practice exercise
\begin_inset Formula $15.$
\end_inset
Need to compute the probability that no two students will complete the
examination within
\begin_inset Formula $10$
\end_inset
minutes of each other.
\end_layout
\begin_layout Standard
To make clear this require, we explain that to no two students complet the
examination within 10 minutes each other
\begin_inset Formula $\Leftrightarrow$
\end_inset
After 1st student finish, 2nd student finish with duration time
\begin_inset Formula $d$
\end_inset
larger than
\begin_inset Formula $10$
\end_inset
than 1st student.
And so on.
\end_layout
\begin_layout Standard
If duration time to finish of 1st one is taken
\begin_inset Formula $t_{1}$
\end_inset
then 2nd is
\begin_inset Formula $t_{2}=t_{1}+d_{1}$
\end_inset
, ...,
\begin_inset Formula $t_{5}=t_{4}+d_{4}$
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $t_{1}$
\end_inset
and
\begin_inset Formula $t_{2}$
\end_inset
is exponential distribution, so after
\begin_inset Formula $t>t_{1}$
\end_inset
(1st one finish exam) them
\begin_inset Formula $d=t_{2}-t_{1}$
\end_inset
is exponential distribution with paramter
\begin_inset Formula $(n+1-k)\beta$
\end_inset
, minimum of duration finish exam of students, know event first on finish.
So
\begin_inset Formula $P(d_{1}\geq10)=e^{\frac{-40}{80}}$
\end_inset
;
\begin_inset Formula $P(d_{2}\geq10)=e^{\frac{-30}{80}}$
\end_inset
;
\begin_inset Formula $P(d_{3}\geq10)=e^{\frac{-20}{80}}$
\end_inset
;
\begin_inset Formula $P(d_{4}\geq10)=e^{\frac{-10}{80}}$
\end_inset
.
We need compute
\begin_inset Formula $P(d_{1}\geq10)P(d_{2}\geq10)P(d_{3}\geq10)P(d_{4}\geq10)=e^{\frac{-5}{4}}$
\end_inset
.
\end_layout
\begin_layout Subsection*
Exercise
\end_layout
\begin_layout Standard
2.
Quantile function of the exponential distribution with parameter
\begin_inset Formula $\beta$
\end_inset
:
\begin_inset Formula $\Phi(t)=\beta\int_{0}^{t}e^{-\beta t}dx=1-e^{-\beta t}=p$
\end_inset
, so
\begin_inset Formula $t=\Phi^{-1}(p)=\frac{-\log(1-p)}{\beta}$
\end_inset
.
\end_layout
\begin_layout Paragraph*
6.
\begin_inset Formula $X_{1},X_{2},...,X_{n}$
\end_inset
form a random sample of size
\begin_inset Formula $n$
\end_inset
from exponential distribution with parameter
\begin_inset Formula $\beta$
\end_inset
.
\begin_inset Formula $\bar{X_{n}}\sim\Gamma(\alpha,n\beta)$
\end_inset
(Using
\begin_inset Formula $\psi$
\end_inset
to prove that)
\end_layout
\begin_layout Section*
5.10 The Bivariate Normal Distribution
\end_layout
\begin_layout Subsection*
Intuition
\end_layout
\begin_layout Standard
In
\series bold
Theorem 5.10.4,
\series default
we have
\begin_inset Formula $Var(X_{2}|x_{1})=(1-\rho^{2})\sigma_{2}^{2}$
\end_inset
, so we can see don't need to know what is
\begin_inset Formula $X_{1}$
\end_inset
, whenever joint of
\begin_inset Formula $X_{2}$
\end_inset
and
\begin_inset Formula $X_{1}$
\end_inset
is bivariate normal distribution, then whatever value of
\begin_inset Formula $X_{1}$
\end_inset
then standard deviation of
\begin_inset Formula $X_{2}$
\end_inset
will decrease (noise decrease), so we can have more confident.
\end_layout
\begin_layout Standard
On beside,
\begin_inset Formula $E[X_{2}|x_{1}]=\mu_{2}+\rho\sigma_{2}(\frac{x_{1}-\mu_{1}}{\sigma_{1}})$
\end_inset
, in this formular have part
\begin_inset Formula $\rho(x_{1}-\mu_{1})$
\end_inset
,
\begin_inset Formula $\rho$
\end_inset
represent correlated of
\begin_inset Formula $X_{1}$
\end_inset
with
\begin_inset Formula $\mu_{1}$
\end_inset
and
\begin_inset Formula $X_{2}$
\end_inset
with
\begin_inset Formula $\mu_{2}$
\end_inset
.
For example, if
\begin_inset Formula $\rho<0$
\end_inset
, then
\begin_inset Formula $P[(X_{1}-\mu_{1})(X_{2}-\mu_{2})<0]$
\end_inset
is larger.
And if we know
\begin_inset Formula $x_{1}-\mu_{1}<0$
\end_inset
, then we can know
\begin_inset Formula $E[X_{2}|x_{1}]=\mu_{2}+\rho\sigma_{2}(\frac{x_{1}-\mu_{1}}{\sigma_{1}})>\mu_{2}$
\end_inset
,and otherwise, so In intuition, if we know about
\begin_inset Formula $x_{1}$
\end_inset
, it can contribute to value of
\begin_inset Formula $X_{2}$
\end_inset
in posterior.
\end_layout
\begin_layout Paragraph*
\series medium
If We say
\begin_inset Formula $X_{1}$
\end_inset
and
\begin_inset Formula $X_{2}$
\end_inset
have bivariate normal distribution, then joint p.d.f will be Eq.
(5.10.2), then Eq.
(5.10.1) holds.
\end_layout
\begin_layout Subsection*
Exercise
\end_layout
\begin_layout Standard
10.
Using multiple transformation in section (4.6 Functions of two or more variables
)
\end_layout
\begin_layout Paragraph*
\series medium
11.
We can easily derive normal distribution of
\begin_inset Formula $Y_{1}=X_{1}+X_{2}$
\end_inset
and
\begin_inset Formula $Y_{2}=X_{1}-X_{2}$
\end_inset
from
\series default
Theorem 5.10.5
\series medium
and we can prove
\begin_inset Formula $\rho=0$
\end_inset
(But cannot assure that
\begin_inset Formula $Y_{1},Y_{2}$
\end_inset
is independent, just imply
\begin_inset Formula $Y_{1},Y_{2}$
\end_inset
is unrelated) (
\series default
We can stop here based on theorem 5.10.3
\series medium
)
\end_layout
\begin_layout Paragraph*
\series medium
Apply
\series default
Theorem 5.10.4:
\series medium
\begin_inset Formula
\[
E[X_{2}|x_{1}]=\mu_{2}+\rho\sigma_{2}(\frac{x_{1}-\mu_{1}}{\sigma_{1}}),Var(X_{2}|x_{1})=(1-\rho^{2})\sigma_{2}^{2}
\]
\end_inset
\end_layout
\begin_layout Standard
Now we need to prove that distribution of
\begin_inset Formula $P(Y_{2}|Y_{1})=P(Y_{2})=N(\mu_{y_{2}},\sigma_{y_{2}})$
\end_inset
\end_layout
\begin_layout Paragraph*
\series medium
14.
From
\begin_inset Formula $f(X_{2}|X_{1}=x_{1})\sim N(ax_{1}+b,\tau);f(X_{1})\sim N(\mu,\sigma)$
\end_inset
.
Apply
\begin_inset Formula $f(x_{1},x_{2})=f(X_{2}|X_{1})f(X_{1})=...exp((x_{2}-ax_{1}-b)^{2}+(x_{1}-\mu)^{2})$
\end_inset
.
Following Exercise13, we can say that this is bivariate normal function.
\end_layout
\end_body
\end_document