forked from braindotai/Watermark-Removal-Pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
65 lines (45 loc) · 2.33 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from torch import optim
from tqdm.auto import tqdm
from helper import *
from model.generator import SkipEncoderDecoder, input_noise
def remove_watermark(image_path, mask_path, max_dim, reg_noise, input_depth, lr, show_step, training_steps, tqdm_length = 100):
DTYPE = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
if not torch.cuda.is_available():
print('\nSetting device to "cpu", since torch is not built with "cuda" support...')
print('It is recommended to use GPU if possible...')
image_np, mask_np = preprocess_images(image_path, mask_path, max_dim)
print('Building the model...')
generator = SkipEncoderDecoder(
input_depth,
num_channels_down = [128] * 5,
num_channels_up = [128] * 5,
num_channels_skip = [128] * 5
).type(DTYPE)
objective = torch.nn.MSELoss().type(DTYPE)
optimizer = optim.Adam(generator.parameters(), lr)
image_var = np_to_torch_array(image_np).type(DTYPE)
mask_var = np_to_torch_array(mask_np).type(DTYPE)
generator_input = input_noise(input_depth, image_np.shape[1:]).type(DTYPE)
generator_input_saved = generator_input.detach().clone()
noise = generator_input.detach().clone()
print('\nStarting training...\n')
progress_bar = tqdm(range(training_steps), desc = 'Completed', ncols = tqdm_length)
for step in progress_bar:
optimizer.zero_grad()
generator_input = generator_input_saved
if reg_noise > 0:
generator_input = generator_input_saved + (noise.normal_() * reg_noise)
output = generator(generator_input)
loss = objective(output * mask_var, image_var * mask_var)
loss.backward()
if step % show_step == 0:
output_image = torch_to_np_array(output)
visualize_sample(image_np, output_image, nrow = 2, size_factor = 10)
progress_bar.set_postfix(Loss = loss.item())
optimizer.step()
output_image = torch_to_np_array(output)
visualize_sample(output_image, nrow = 1, size_factor = 10)
pil_image = Image.fromarray((output_image.transpose(1, 2, 0) * 255.0).astype('uint8'))
output_path = image_path.split('/')[-1].split('.')[-2] + '-output.jpg'
print(f'\nSaving final output image to: "{output_path}"\n')
pil_image.save(output_path)