|
| 1 | +import timeit |
| 2 | + |
| 3 | +# Note: This example is only tested with Python 3 (not Python 2) |
| 4 | + |
| 5 | +# This is a very simple benchmark to give you an idea of how fast each step of face recognition will run on your system. |
| 6 | +# Notice that face detection gets very slow at large image sizes. So you might consider running face detection on a |
| 7 | +# scaled down version of your image and then running face encodings on the the full size image. |
| 8 | + |
| 9 | +TEST_IMAGES = [ |
| 10 | + "obama-240p.jpg", |
| 11 | + "obama-480p.jpg", |
| 12 | + "obama-720p.jpg", |
| 13 | + "obama-1080p.jpg" |
| 14 | +] |
| 15 | + |
| 16 | + |
| 17 | +def run_test(setup, test, iterations_per_test=5, tests_to_run=10): |
| 18 | + fastest_execution = min(timeit.Timer(test, setup=setup).repeat(tests_to_run, iterations_per_test)) |
| 19 | + execution_time = fastest_execution / iterations_per_test |
| 20 | + fps = 1.0 / execution_time |
| 21 | + return execution_time, fps |
| 22 | + |
| 23 | + |
| 24 | +setup_locate_faces = """ |
| 25 | +import face_recognition |
| 26 | +
|
| 27 | +image = face_recognition.load_image_file("{}") |
| 28 | +""" |
| 29 | + |
| 30 | +test_locate_faces = """ |
| 31 | +face_locations = face_recognition.face_locations(image) |
| 32 | +""" |
| 33 | + |
| 34 | +setup_face_landmarks = """ |
| 35 | +import face_recognition |
| 36 | +
|
| 37 | +image = face_recognition.load_image_file("{}") |
| 38 | +face_locations = face_recognition.face_locations(image) |
| 39 | +""" |
| 40 | + |
| 41 | +test_face_landmarks = """ |
| 42 | +landmarks = face_recognition.face_landmarks(image, face_locations=face_locations)[0] |
| 43 | +""" |
| 44 | + |
| 45 | +setup_encode_face = """ |
| 46 | +import face_recognition |
| 47 | +
|
| 48 | +image = face_recognition.load_image_file("{}") |
| 49 | +face_locations = face_recognition.face_locations(image) |
| 50 | +""" |
| 51 | + |
| 52 | +test_encode_face = """ |
| 53 | +encoding = face_recognition.face_encodings(image, known_face_locations=face_locations)[0] |
| 54 | +""" |
| 55 | + |
| 56 | +setup_end_to_end = """ |
| 57 | +import face_recognition |
| 58 | +
|
| 59 | +image = face_recognition.load_image_file("{}") |
| 60 | +""" |
| 61 | + |
| 62 | +test_end_to_end = """ |
| 63 | +encoding = face_recognition.face_encodings(image)[0] |
| 64 | +""" |
| 65 | + |
| 66 | +print("Benchmarks (Note: All benchmarks are only using a single CPU core)") |
| 67 | +print() |
| 68 | + |
| 69 | +for image in TEST_IMAGES: |
| 70 | + size = image.split("-")[1].split(".")[0] |
| 71 | + print("Timings at {}:".format(size)) |
| 72 | + |
| 73 | + print(" - Face locations: {:.4f}s ({:.2f} fps)".format(*run_test(setup_locate_faces.format(image), test_locate_faces))) |
| 74 | + print(" - Face landmarks: {:.4f}s ({:.2f} fps)".format(*run_test(setup_face_landmarks.format(image), test_face_landmarks))) |
| 75 | + print(" - Encode face (inc. landmarks): {:.4f}s ({:.2f} fps)".format(*run_test(setup_encode_face.format(image), test_encode_face))) |
| 76 | + print(" - End-to-end: {:.4f}s ({:.2f} fps)".format(*run_test(setup_end_to_end.format(image), test_end_to_end))) |
| 77 | + print() |
0 commit comments