forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflat_mutation_reader.cc
673 lines (636 loc) · 28.4 KB
/
flat_mutation_reader.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
* Copyright (C) 2017 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include "flat_mutation_reader.hh"
#include "mutation_reader.hh"
#include "seastar/util/reference_wrapper.hh"
#include <algorithm>
#include <boost/range/adaptor/transformed.hpp>
#include <seastar/util/defer.hh>
static size_t compute_buffer_size(const schema& s, circular_buffer<mutation_fragment>& buffer)
{
return boost::accumulate(
buffer
| boost::adaptors::transformed([&s] (const mutation_fragment& mf) {
return mf.memory_usage(s);
}), size_t(0)
);
}
void flat_mutation_reader::impl::forward_buffer_to(const position_in_partition& pos) {
_buffer.erase(std::remove_if(_buffer.begin(), _buffer.end(), [this, &pos] (mutation_fragment& f) {
return !f.relevant_for_range_assuming_after(*_schema, pos);
}), _buffer.end());
_buffer_size = compute_buffer_size(*_schema, _buffer);
}
void flat_mutation_reader::impl::clear_buffer_to_next_partition() {
auto next_partition_start = std::find_if(_buffer.begin(), _buffer.end(), [] (const mutation_fragment& mf) {
return mf.is_partition_start();
});
_buffer.erase(_buffer.begin(), next_partition_start);
_buffer_size = compute_buffer_size(*_schema, _buffer);
}
flat_mutation_reader flat_mutation_reader::impl::reverse_partitions(flat_mutation_reader::impl& original) {
// FIXME: #1413 Full partitions get accumulated in memory.
class partition_reversing_mutation_reader final : public flat_mutation_reader::impl {
flat_mutation_reader::impl* _source;
range_tombstone_list _range_tombstones;
std::stack<mutation_fragment> _mutation_fragments;
mutation_fragment_opt _partition_end;
private:
stop_iteration emit_partition() {
auto emit_range_tombstone = [&] {
auto it = std::prev(_range_tombstones.tombstones().end());
auto& rt = *it;
_range_tombstones.tombstones().erase(it);
auto rt_owner = alloc_strategy_unique_ptr<range_tombstone>(&rt);
push_mutation_fragment(mutation_fragment(std::move(rt)));
};
position_in_partition::less_compare cmp(*_source->_schema);
while (!_mutation_fragments.empty() && !is_buffer_full()) {
auto& mf = _mutation_fragments.top();
if (!_range_tombstones.empty() && !cmp(_range_tombstones.tombstones().rbegin()->end_position(), mf.position())) {
emit_range_tombstone();
} else {
push_mutation_fragment(std::move(mf));
_mutation_fragments.pop();
}
}
while (!_range_tombstones.empty() && !is_buffer_full()) {
emit_range_tombstone();
}
if (is_buffer_full()) {
return stop_iteration::yes;
}
push_mutation_fragment(std::move(*std::exchange(_partition_end, stdx::nullopt)));
return stop_iteration::no;
}
future<stop_iteration> consume_partition_from_source(db::timeout_clock::time_point timeout) {
if (_source->is_buffer_empty()) {
if (_source->is_end_of_stream()) {
_end_of_stream = true;
return make_ready_future<stop_iteration>(stop_iteration::yes);
}
return _source->fill_buffer(timeout).then([] { return stop_iteration::no; });
}
while (!_source->is_buffer_empty() && !is_buffer_full()) {
auto mf = _source->pop_mutation_fragment();
if (mf.is_partition_start() || mf.is_static_row()) {
push_mutation_fragment(std::move(mf));
} else if (mf.is_end_of_partition()) {
_partition_end = std::move(mf);
if (emit_partition()) {
return make_ready_future<stop_iteration>(stop_iteration::yes);
}
} else if (mf.is_range_tombstone()) {
_range_tombstones.apply(*_source->_schema, std::move(mf.as_range_tombstone()));
} else {
_mutation_fragments.emplace(std::move(mf));
}
}
return make_ready_future<stop_iteration>(is_buffer_full());
}
public:
explicit partition_reversing_mutation_reader(flat_mutation_reader::impl& mr)
: flat_mutation_reader::impl(mr._schema)
, _source(&mr)
, _range_tombstones(*mr._schema)
{ }
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override {
return repeat([&, timeout] {
if (_partition_end) {
// We have consumed full partition from source, now it is
// time to emit it.
auto stop = emit_partition();
if (stop) {
return make_ready_future<stop_iteration>(stop_iteration::yes);
}
}
return consume_partition_from_source(timeout);
});
}
virtual void next_partition() override {
clear_buffer_to_next_partition();
if (is_buffer_empty() && !is_end_of_stream()) {
while (!_mutation_fragments.empty()) {
_mutation_fragments.pop();
}
_range_tombstones.clear();
_partition_end = stdx::nullopt;
_source->next_partition();
}
}
virtual future<> fast_forward_to(const dht::partition_range&, db::timeout_clock::time_point) override {
throw std::bad_function_call();
}
virtual future<> fast_forward_to(position_range, db::timeout_clock::time_point) override {
throw std::bad_function_call();
}
virtual size_t buffer_size() const override {
return flat_mutation_reader::impl::buffer_size() + _source->buffer_size();
}
};
return make_flat_mutation_reader<partition_reversing_mutation_reader>(original);
}
template<typename Source>
future<bool> flat_mutation_reader::impl::fill_buffer_from(Source& source, db::timeout_clock::time_point timeout) {
if (source.is_buffer_empty()) {
if (source.is_end_of_stream()) {
return make_ready_future<bool>(true);
}
return source.fill_buffer(timeout).then([this, &source, timeout] {
return fill_buffer_from(source, timeout);
});
} else {
while (!source.is_buffer_empty() && !is_buffer_full()) {
push_mutation_fragment(source.pop_mutation_fragment());
}
return make_ready_future<bool>(source.is_end_of_stream() && source.is_buffer_empty());
}
}
template future<bool> flat_mutation_reader::impl::fill_buffer_from<flat_mutation_reader>(flat_mutation_reader&, db::timeout_clock::time_point);
flat_mutation_reader& to_reference(reference_wrapper<flat_mutation_reader>& wrapper) {
return wrapper.get();
}
flat_mutation_reader make_delegating_reader(flat_mutation_reader& r) {
return make_flat_mutation_reader<delegating_reader<reference_wrapper<flat_mutation_reader>>>(ref(r));
}
flat_mutation_reader make_forwardable(flat_mutation_reader m) {
class reader : public flat_mutation_reader::impl {
flat_mutation_reader _underlying;
position_range _current = {
position_in_partition(position_in_partition::partition_start_tag_t()),
position_in_partition(position_in_partition::after_static_row_tag_t())
};
mutation_fragment_opt _next;
// When resolves, _next is engaged or _end_of_stream is set.
future<> ensure_next() {
if (_next) {
return make_ready_future<>();
}
return _underlying().then([this] (auto&& mfo) {
_next = std::move(mfo);
if (!_next) {
_end_of_stream = true;
}
});
}
public:
reader(flat_mutation_reader r) : impl(r.schema()), _underlying(std::move(r)) { }
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override {
return repeat([this] {
if (is_buffer_full()) {
return make_ready_future<stop_iteration>(stop_iteration::yes);
}
return ensure_next().then([this] {
if (is_end_of_stream()) {
return stop_iteration::yes;
}
position_in_partition::less_compare cmp(*_schema);
if (!cmp(_next->position(), _current.end())) {
_end_of_stream = true;
// keep _next, it may be relevant for next range
return stop_iteration::yes;
}
if (_next->relevant_for_range(*_schema, _current.start())) {
push_mutation_fragment(std::move(*_next));
}
_next = {};
return stop_iteration::no;
});
});
}
virtual future<> fast_forward_to(position_range pr, db::timeout_clock::time_point timeout) override {
_current = std::move(pr);
_end_of_stream = false;
forward_buffer_to(_current.start());
return make_ready_future<>();
}
virtual void next_partition() override {
_end_of_stream = false;
if (!_next || !_next->is_partition_start()) {
_underlying.next_partition();
_next = {};
}
clear_buffer_to_next_partition();
_current = {
position_in_partition(position_in_partition::partition_start_tag_t()),
position_in_partition(position_in_partition::after_static_row_tag_t())
};
}
virtual future<> fast_forward_to(const dht::partition_range& pr, db::timeout_clock::time_point timeout) override {
_end_of_stream = false;
clear_buffer();
_next = {};
_current = {
position_in_partition(position_in_partition::partition_start_tag_t()),
position_in_partition(position_in_partition::after_static_row_tag_t())
};
return _underlying.fast_forward_to(pr, timeout);
}
virtual size_t buffer_size() const override {
return flat_mutation_reader::impl::buffer_size() + _underlying.buffer_size();
}
};
return make_flat_mutation_reader<reader>(std::move(m));
}
flat_mutation_reader make_nonforwardable(flat_mutation_reader r, bool single_partition) {
class reader : public flat_mutation_reader::impl {
flat_mutation_reader _underlying;
bool _single_partition;
bool _static_row_done = false;
bool is_end_end_of_underlying_stream() const {
return _underlying.is_buffer_empty() && _underlying.is_end_of_stream();
}
future<> on_end_of_underlying_stream(db::timeout_clock::time_point timeout) {
if (!_static_row_done) {
_static_row_done = true;
return _underlying.fast_forward_to(position_range::all_clustered_rows(), timeout);
}
push_mutation_fragment(partition_end());
if (_single_partition) {
_end_of_stream = true;
return make_ready_future<>();
}
_underlying.next_partition();
_static_row_done = false;
return _underlying.fill_buffer().then([this] {
_end_of_stream = is_end_end_of_underlying_stream();
});
}
public:
reader(flat_mutation_reader r, bool single_partition)
: impl(r.schema())
, _underlying(std::move(r))
, _single_partition(single_partition)
{ }
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override {
return do_until([this] { return is_end_of_stream() || is_buffer_full(); }, [this, timeout] {
return fill_buffer_from(_underlying, timeout).then([this, timeout] (bool underlying_finished) {
if (underlying_finished) {
return on_end_of_underlying_stream(timeout);
}
return make_ready_future<>();
});
});
}
virtual future<> fast_forward_to(position_range pr, db::timeout_clock::time_point timeout) override {
throw std::bad_function_call();
}
virtual void next_partition() override {
clear_buffer_to_next_partition();
if (is_buffer_empty()) {
_underlying.next_partition();
}
_end_of_stream = is_end_end_of_underlying_stream();
}
virtual future<> fast_forward_to(const dht::partition_range& pr, db::timeout_clock::time_point timeout) override {
_end_of_stream = false;
clear_buffer();
return _underlying.fast_forward_to(pr, timeout);
}
virtual size_t buffer_size() const override {
return flat_mutation_reader::impl::buffer_size() + _underlying.buffer_size();
}
};
return make_flat_mutation_reader<reader>(std::move(r), single_partition);
}
class empty_flat_reader final : public flat_mutation_reader::impl {
public:
empty_flat_reader(schema_ptr s) : impl(std::move(s)) { _end_of_stream = true; }
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override { return make_ready_future<>(); }
virtual void next_partition() override {}
virtual future<> fast_forward_to(const dht::partition_range& pr, db::timeout_clock::time_point timeout) override { return make_ready_future<>(); };
virtual future<> fast_forward_to(position_range cr, db::timeout_clock::time_point timeout) override { return make_ready_future<>(); };
};
flat_mutation_reader make_empty_flat_reader(schema_ptr s) {
return make_flat_mutation_reader<empty_flat_reader>(std::move(s));
}
flat_mutation_reader
flat_mutation_reader_from_mutations(std::vector<mutation> ms,
const query::partition_slice& slice,
streamed_mutation::forwarding fwd) {
std::vector<mutation> sliced_ms;
for (auto& m : ms) {
auto ck_ranges = query::clustering_key_filter_ranges::get_ranges(*m.schema(), slice, m.key());
auto mp = mutation_partition(std::move(m.partition()), *m.schema(), std::move(ck_ranges));
sliced_ms.emplace_back(m.schema(), m.decorated_key(), std::move(mp));
}
return flat_mutation_reader_from_mutations(sliced_ms, query::full_partition_range, fwd);
}
flat_mutation_reader
flat_mutation_reader_from_mutations(std::vector<mutation> mutations, const dht::partition_range& pr, streamed_mutation::forwarding fwd) {
class reader final : public flat_mutation_reader::impl {
std::vector<mutation> _mutations;
std::vector<mutation>::iterator _cur;
std::vector<mutation>::iterator _end;
position_in_partition::less_compare _cmp;
bool _static_row_done = false;
mutation_fragment_opt _rt;
mutation_fragment_opt _cr;
private:
void prepare_next_clustering_row() {
auto& crs = _cur->partition().clustered_rows();
while (true) {
auto re = crs.unlink_leftmost_without_rebalance();
if (!re) {
break;
}
auto re_deleter = defer([re] { current_deleter<rows_entry>()(re); });
if (!re->dummy()) {
_cr = mutation_fragment(std::move(*re));
break;
}
}
}
void prepare_next_range_tombstone() {
auto& rts = _cur->partition().row_tombstones().tombstones();
auto rt = rts.unlink_leftmost_without_rebalance();
if (rt) {
auto rt_deleter = defer([rt] { current_deleter<range_tombstone>()(rt); });
_rt = mutation_fragment(std::move(*rt));
}
}
mutation_fragment_opt read_next() {
if (_cr && (!_rt || _cmp(_cr->position(), _rt->position()))) {
auto cr = std::exchange(_cr, { });
prepare_next_clustering_row();
return cr;
} else if (_rt) {
auto rt = std::exchange(_rt, { });
prepare_next_range_tombstone();
return rt;
}
return { };
}
private:
void do_fill_buffer(db::timeout_clock::time_point timeout) {
while (!is_end_of_stream() && !is_buffer_full()) {
if (!_static_row_done) {
_static_row_done = true;
if (!_cur->partition().static_row().empty()) {
push_mutation_fragment(static_row(std::move(_cur->partition().static_row())));
}
}
auto mfopt = read_next();
if (mfopt) {
push_mutation_fragment(std::move(*mfopt));
} else {
push_mutation_fragment(partition_end());
++_cur;
if (_cur == _end) {
_end_of_stream = true;
} else {
start_new_partition();
}
}
}
}
void start_new_partition() {
_static_row_done = false;
push_mutation_fragment(partition_start(_cur->decorated_key(),
_cur->partition().partition_tombstone()));
prepare_next_clustering_row();
prepare_next_range_tombstone();
}
void destroy_current_mutation() {
auto &crs = _cur->partition().clustered_rows();
auto re = crs.unlink_leftmost_without_rebalance();
while (re) {
current_deleter<rows_entry>()(re);
re = crs.unlink_leftmost_without_rebalance();
}
auto &rts = _cur->partition().row_tombstones().tombstones();
auto rt = rts.unlink_leftmost_without_rebalance();
while (rt) {
current_deleter<range_tombstone>()(rt);
rt = rts.unlink_leftmost_without_rebalance();
}
}
struct cmp {
bool operator()(const mutation& m, const dht::ring_position& p) const {
return m.decorated_key().tri_compare(*m.schema(), p) < 0;
}
bool operator()(const dht::ring_position& p, const mutation& m) const {
return m.decorated_key().tri_compare(*m.schema(), p) > 0;
}
};
static std::vector<mutation>::iterator find_first_partition(std::vector<mutation>& ms, const dht::partition_range& pr) {
if (!pr.start()) {
return std::begin(ms);
}
if (pr.is_singular()) {
return std::lower_bound(std::begin(ms), std::end(ms), pr.start()->value(), cmp{});
} else {
if (pr.start()->is_inclusive()) {
return std::lower_bound(std::begin(ms), std::end(ms), pr.start()->value(), cmp{});
} else {
return std::upper_bound(std::begin(ms), std::end(ms), pr.start()->value(), cmp{});
}
}
}
static std::vector<mutation>::iterator find_last_partition(std::vector<mutation>& ms, const dht::partition_range& pr) {
if (!pr.end()) {
return std::end(ms);
}
if (pr.is_singular()) {
return std::upper_bound(std::begin(ms), std::end(ms), pr.start()->value(), cmp{});
} else {
if (pr.end()->is_inclusive()) {
return std::upper_bound(std::begin(ms), std::end(ms), pr.end()->value(), cmp{});
} else {
return std::lower_bound(std::begin(ms), std::end(ms), pr.end()->value(), cmp{});
}
}
}
public:
reader(schema_ptr s, std::vector<mutation>&& mutations, const dht::partition_range& pr)
: impl(std::move(s))
, _mutations(std::move(mutations))
, _cur(find_first_partition(_mutations, pr))
, _end(find_last_partition(_mutations, pr))
, _cmp(*_cur->schema())
{
_end_of_stream = _cur == _end;
if (!_end_of_stream) {
auto mutation_destroyer = defer([this] { destroy_mutations(); });
start_new_partition();
do_fill_buffer(db::no_timeout);
mutation_destroyer.cancel();
}
}
void destroy_mutations() noexcept {
// After unlink_leftmost_without_rebalance() was called on a bi::set
// we need to complete destroying the tree using that function.
// clear_and_dispose() used by mutation_partition destructor won't
// work properly.
while (_cur != _end) {
destroy_current_mutation();
++_cur;
}
}
~reader() {
destroy_mutations();
}
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override {
do_fill_buffer(timeout);
return make_ready_future<>();
}
virtual void next_partition() override {
clear_buffer_to_next_partition();
if (is_buffer_empty() && !is_end_of_stream()) {
destroy_current_mutation();
++_cur;
if (_cur == _end) {
_end_of_stream = true;
} else {
start_new_partition();
}
}
}
virtual future<> fast_forward_to(const dht::partition_range& pr, db::timeout_clock::time_point timeout) override {
clear_buffer();
_cur = find_first_partition(_mutations, pr);
_end = find_last_partition(_mutations, pr);
_static_row_done = false;
_cr = {};
_rt = {};
_end_of_stream = _cur == _end;
if (!_end_of_stream) {
start_new_partition();
}
return make_ready_future<>();
};
virtual future<> fast_forward_to(position_range cr, db::timeout_clock::time_point timeout) override {
throw std::runtime_error("This reader can't be fast forwarded to another position.");
};
};
assert(!mutations.empty());
schema_ptr s = mutations[0].schema();
auto res = make_flat_mutation_reader<reader>(std::move(s), std::move(mutations), pr);
if (fwd) {
return make_forwardable(std::move(res));
}
return res;
}
class flat_multi_range_mutation_reader : public flat_mutation_reader::impl {
public:
using ranges_vector = dht::partition_range_vector;
private:
const ranges_vector& _ranges;
ranges_vector::const_iterator _current_range;
flat_mutation_reader _reader;
public:
flat_multi_range_mutation_reader(schema_ptr s, mutation_source source, const ranges_vector& ranges,
const query::partition_slice& slice, const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
mutation_reader::forwarding fwd_mr)
: impl(s)
, _ranges(ranges)
, _current_range(_ranges.begin())
, _reader(source.make_reader(s, *_current_range, slice, pc, trace_state, streamed_mutation::forwarding::no,
_ranges.size() > 1 ? mutation_reader::forwarding::yes : fwd_mr))
{
}
virtual future<> fill_buffer(db::timeout_clock::time_point timeout) override {
return do_until([this] { return is_end_of_stream() || !is_buffer_empty(); }, [this, timeout] {
return _reader.fill_buffer(timeout).then([this, timeout] () {
while (!_reader.is_buffer_empty()) {
push_mutation_fragment(_reader.pop_mutation_fragment());
}
if (!_reader.is_end_of_stream()) {
return make_ready_future<>();
}
++_current_range;
if (_current_range == _ranges.end()) {
_end_of_stream = true;
return make_ready_future<>();
}
return _reader.fast_forward_to(*_current_range, timeout);
});
});
}
virtual future<> fast_forward_to(const dht::partition_range& pr, db::timeout_clock::time_point timeout) override {
clear_buffer();
_end_of_stream = false;
// When end of pr is reached, this reader will increment _current_range
// and notice that it now points to _ranges.end().
_current_range = std::prev(_ranges.end());
return _reader.fast_forward_to(pr, timeout);
}
virtual future<> fast_forward_to(position_range pr, db::timeout_clock::time_point timeout) override {
throw std::bad_function_call();
}
virtual void next_partition() override {
clear_buffer_to_next_partition();
if (is_buffer_empty() && !is_end_of_stream()) {
_reader.next_partition();
}
}
virtual size_t buffer_size() const override {
return flat_mutation_reader::impl::buffer_size() + _reader.buffer_size();
}
};
flat_mutation_reader
make_flat_multi_range_reader(schema_ptr s, mutation_source source, const dht::partition_range_vector& ranges,
const query::partition_slice& slice, const io_priority_class& pc,
tracing::trace_state_ptr trace_state,
mutation_reader::forwarding fwd_mr)
{
if (ranges.empty()) {
return make_empty_flat_reader(std::move(s));
} else if (ranges.size() == 1) {
return source.make_reader(std::move(s), ranges.front(), slice, pc, std::move(trace_state), streamed_mutation::forwarding::no, fwd_mr);
} else {
return make_flat_mutation_reader<flat_multi_range_mutation_reader>(std::move(s), std::move(source), ranges,
slice, pc, std::move(trace_state), fwd_mr);
}
}
flat_mutation_reader
make_flat_mutation_reader_from_fragments(schema_ptr schema, std::deque<mutation_fragment> fragments) {
class reader : public flat_mutation_reader::impl {
std::deque<mutation_fragment> _fragments;
public:
reader(schema_ptr schema, std::deque<mutation_fragment> fragments)
: flat_mutation_reader::impl(std::move(schema))
, _fragments(std::move(fragments)) {
}
virtual future<> fill_buffer(db::timeout_clock::time_point) override {
while (!(_end_of_stream = _fragments.empty()) && !is_buffer_full()) {
push_mutation_fragment(std::move(_fragments.front()));
_fragments.pop_front();
}
return make_ready_future<>();
}
virtual void next_partition() override {
clear_buffer_to_next_partition();
if (is_buffer_empty()) {
while (!(_end_of_stream = _fragments.empty()) && !_fragments.front().is_partition_start()) {
_fragments.pop_front();
}
}
}
virtual future<> fast_forward_to(position_range pr, db::timeout_clock::time_point timeout) override {
throw std::runtime_error("This reader can't be fast forwarded to another range.");
}
virtual future<> fast_forward_to(const dht::partition_range& pr, db::timeout_clock::time_point timeout) override {
throw std::runtime_error("This reader can't be fast forwarded to another position.");
}
};
return make_flat_mutation_reader<reader>(std::move(schema), std::move(fragments));
}