forked from scylladb/scylladb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrow_cache_alloc_stress.cc
260 lines (216 loc) · 10.3 KB
/
row_cache_alloc_stress.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*
* Copyright (C) 2015 ScyllaDB
*/
/*
* This file is part of Scylla.
*
* Scylla is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Scylla is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Scylla. If not, see <http://www.gnu.org/licenses/>.
*/
#include <core/distributed.hh>
#include <core/app-template.hh>
#include <core/sstring.hh>
#include <core/thread.hh>
#include "utils/managed_bytes.hh"
#include "utils/logalloc.hh"
#include "row_cache.hh"
#include "log.hh"
#include "schema_builder.hh"
#include "memtable.hh"
#include "disk-error-handler.hh"
thread_local disk_error_signal_type commit_error;
thread_local disk_error_signal_type general_disk_error;
static
partition_key new_key(schema_ptr s) {
static thread_local int next = 0;
return partition_key::from_single_value(*s, to_bytes(sprint("key%d", next++)));
}
static
clustering_key new_ckey(schema_ptr s) {
static thread_local int next = 0;
return clustering_key::from_single_value(*s, to_bytes(sprint("ckey%d", next++)));
}
int main(int argc, char** argv) {
namespace bpo = boost::program_options;
app_template app;
app.add_options()
("debug", "enable debug logging");
return app.run(argc, argv, [&app] {
if (app.configuration().count("debug")) {
logging::logger_registry().set_all_loggers_level(logging::log_level::debug);
}
// This test is supposed to verify that when we're low on memory but
// we still have plenty of evictable memory in cache, we should be
// able to populate cache with large mutations This test works only
// with seastar's allocator.
return seastar::async([] {
auto s = schema_builder("ks", "cf")
.with_column("pk", bytes_type, column_kind::partition_key)
.with_column("ck", bytes_type, column_kind::clustering_key)
.with_column("v", bytes_type, column_kind::regular_column)
.build();
auto mt = make_lw_shared<memtable>(s);
cache_tracker tracker;
row_cache cache(s, mt->as_data_source(), mt->as_key_source(), tracker);
std::vector<dht::decorated_key> keys;
size_t cell_size = 1024;
size_t row_count = 40 * 1024; // 40M mutations
auto make_small_mutation = [&] {
mutation m(new_key(s), s);
m.set_clustered_cell(new_ckey(s), "v", data_value(bytes(bytes::initialized_later(), cell_size)), 1);
return m;
};
auto make_large_mutation = [&] {
mutation m(new_key(s), s);
for (size_t j = 0; j < row_count; j++) {
m.set_clustered_cell(new_ckey(s), "v", data_value(bytes(bytes::initialized_later(), cell_size)), 2);
}
return m;
};
for (int i = 0; i < 10; i++) {
auto key = dht::global_partitioner().decorate_key(*s, new_key(s));
mutation m1(key, s);
m1.set_clustered_cell(new_ckey(s), "v", data_value(bytes(bytes::initialized_later(), cell_size)), 1);
cache.populate(m1);
// Putting large mutations into the memtable. Should take about row_count*cell_size each.
mutation m2(key, s);
for (size_t j = 0; j < row_count; j++) {
m2.set_clustered_cell(new_ckey(s), "v", data_value(bytes(bytes::initialized_later(), cell_size)), 2);
}
mt->apply(m2);
keys.push_back(key);
}
auto reclaimable_memory = [] {
return memory::stats().free_memory() + logalloc::shard_tracker().occupancy().free_space();
};
std::cout << "memtable occupancy: " << mt->occupancy() << "\n";
std::cout << "Cache occupancy: " << tracker.region().occupancy() << "\n";
std::cout << "Reclaimable memory: " << reclaimable_memory() << "\n";
// We need to have enough Free memory to copy memtable into cache
// When this assertion fails, increase amount of memory
assert(mt->occupancy().used_space() < reclaimable_memory());
auto checker = [](const partition_key& key) {
return partition_presence_checker_result::maybe_exists;
};
std::deque<dht::decorated_key> cache_stuffing;
auto fill_cache_to_the_top = [&] {
std::cout << "Filling up memory with evictable data\n";
while (true) {
// Ensure that entries matching memtable partitions are evicted
// last, we want to hit the merge path in row_cache::update()
for (auto&& key : keys) {
cache.touch(key);
}
auto occupancy_before = tracker.region().occupancy().used_space();
auto m = make_small_mutation();
cache_stuffing.push_back(m.decorated_key());
cache.populate(m);
if (tracker.region().occupancy().used_space() <= occupancy_before) {
break;
}
}
std::cout << "Shuffling..\n";
// Evict in random order to create fragmentation.
std::random_shuffle(cache_stuffing.begin(), cache_stuffing.end());
for (auto&& key : cache_stuffing) {
cache.touch(key);
}
// Ensure that entries matching memtable partitions are evicted
// last, we want to hit the merge path in row_cache::update()
for (auto&& key : keys) {
cache.touch(key);
}
std::cout << "Reclaimable memory: " << reclaimable_memory() << "\n";
std::cout << "Cache occupancy: " << tracker.region().occupancy() << "\n";
};
std::deque<std::unique_ptr<char[]>> stuffing;
auto fragment_free_space = [&] {
stuffing.clear();
std::cout << "Reclaimable memory: " << reclaimable_memory() << "\n";
std::cout << "Free memory: " << memory::stats().free_memory() << "\n";
std::cout << "Cache occupancy: " << tracker.region().occupancy() << "\n";
// Induce memory fragmentation by taking down cache segments,
// which should be evicted in random order, and inducing high
// waste level in them. Should leave around up to 100M free,
// but no LSA segment should fit.
for (unsigned i = 0; i < 100 * 1024 * 1024 / (logalloc::segment_size / 2); ++i) {
stuffing.emplace_back(std::make_unique<char[]>(logalloc::segment_size / 2 + 1));
}
std::cout << "After fragmenting:\n";
std::cout << "Reclaimable memory: " << reclaimable_memory() << "\n";
std::cout << "Free memory: " << memory::stats().free_memory() << "\n";
std::cout << "Cache occupancy: " << tracker.region().occupancy() << "\n";
};
fill_cache_to_the_top();
fragment_free_space();
cache.update(*mt, checker).get();
stuffing.clear();
cache_stuffing.clear();
// Verify that all mutations from memtable went through
for (auto&& key : keys) {
auto range = query::partition_range::make_singular(key);
auto reader = cache.make_reader(s, range);
auto mo = reader().get0();
assert(mo);
assert(mo->partition().live_row_count(*s) ==
row_count + 1 /* one row was already in cache before update()*/);
}
std::cout << "Testing reading from cache.\n";
fill_cache_to_the_top();
for (auto&& key : keys) {
cache.touch(key);
}
for (auto&& key : keys) {
auto range = query::partition_range::make_singular(key);
auto reader = cache.make_reader(s, range);
auto mo = reader().get0();
assert(mo);
}
std::cout << "Testing reading when memory can't be reclaimed.\n";
// We want to check that when we really can't reserve memory, allocating_section
// throws rather than enter infinite loop.
{
stuffing.clear();
cache_stuffing.clear();
tracker.clear();
// eviction victims
for (unsigned i = 0; i < logalloc::segment_size / cell_size; ++i) {
cache.populate(make_small_mutation());
}
const mutation& m = make_large_mutation();
auto range = query::partition_range::make_singular(m.decorated_key());
cache.populate(m);
logalloc::shard_tracker().reclaim_all_free_segments();
{
logalloc::reclaim_lock _(tracker.region());
try {
while (true) {
stuffing.emplace_back(std::make_unique<char[]>(logalloc::segment_size));
}
} catch (const std::bad_alloc&) {
//expected
}
}
try {
auto reader = cache.make_reader(s, range);
assert(!reader().get0());
auto evicted_from_cache = logalloc::segment_size + cell_size * row_count;
new char[evicted_from_cache + logalloc::segment_size];
assert(false); // The test is not invoking the case which it's supposed to test
} catch (const std::bad_alloc&) {
// expected
}
}
});
});
}