forked from NervanaSystems/neon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_gradient_mlp.py
89 lines (74 loc) · 2.89 KB
/
test_gradient_mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
# ----------------------------------------------------------------------------
# Copyright 2015-2016 Nervana Systems Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ----------------------------------------------------------------------------
"""
Generalized gradient testing applied to mlp/linear layer
"""
import itertools as itt
import numpy as np
from neon import NervanaObject
from neon.layers.layer import Linear
from neon.initializers.initializer import Gaussian
from grad_funcs import general_gradient_comp
# add a reset methods to the layer classes
# this is used to reset the layer so that
# running fprop and bprop multiple times
# produces repeatable results
# some layers just need the function defined
class LinearWithReset(Linear):
def reset(self):
pass
def pytest_generate_tests(metafunc):
# main test generator
# generates the parameter combos for
# the tests based on whether the
# "--all" option is given to py.test
# that option is added in conftest.py
# global parameter
if metafunc.config.option.all:
bsz_rng = [16, 32, 64]
else:
bsz_rng = [16]
# mlp tests
if 'mlpargs' in metafunc.fixturenames:
fargs = []
if metafunc.config.option.all:
nin_rng = [1, 2, 3, 10]
nout_rng = [1, 2, 3, 10]
else:
nin_rng = [1, 2]
nout_rng = [3]
# generate the params lists
fargs = itt.product(nin_rng, nout_rng, bsz_rng)
# parameterize the call for all test functions
# with mlpargs as an argument
metafunc.parametrize("mlpargs", fargs)
def test_mlp(backend_cpu64, mlpargs):
nin, nout, batch_size = mlpargs
# run the gradient check on an mlp
batch_size = batch_size
NervanaObject.be.bsz = NervanaObject.be.batch_size = batch_size
init = Gaussian()
layer = LinearWithReset(nout=nout, init=init)
inp = np.random.randn(nin, batch_size)
epsilon = 1.0e-5
pert_frac = 0.1 # test 10% of the inputs
# select pert_frac fraction of inps to perturb
pert_cnt = int(np.ceil(inp.size * pert_frac))
pert_inds = np.random.permutation(inp.size)[0:pert_cnt]
(max_abs, max_rel) = general_gradient_comp(layer,
inp,
epsilon=epsilon,
pert_inds=pert_inds)
assert max_abs < 1.0e-7