forked from NervanaSystems/neon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pascal_data_check.py
92 lines (73 loc) · 3.38 KB
/
pascal_data_check.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# ----------------------------------------------------------------------------
# Copyright 2015-2016 Nervana Systems Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ----------------------------------------------------------------------------
import logging
import numpy as np
import os
from neon.backends import gen_backend
from neon.data import PASCALVOC
from neon.data.datasets import Dataset
from neon.util.argparser import NeonArgparser, extract_valid_args
from neon.util.compat import pickle
logging.basicConfig(level=20)
logger = logging.getLogger()
def test_pascalvoc(backend_default, data):
url = 'https://s3-us-west-1.amazonaws.com/nervana-pascal-voc-data'
filename = 'pascal_data_ref.pkl'
size = 423982870
workdir, filepath = Dataset._valid_path_append(data, '', filename)
if not os.path.exists(filepath):
Dataset.fetch_dataset(url, filename, filepath, size)
with open(filepath, 'rb') as handle:
neon_data_ref = pickle.loads(handle.read())
n_mb = neon_data_ref['n_mb']
img_per_batch = neon_data_ref['img_per_batch']
rois_per_img = neon_data_ref['rois_per_img']
dataset = neon_data_ref['dataset']
year = neon_data_ref['year']
output_type = neon_data_ref['output_type']
rois_random_sample = neon_data_ref['rois_random_sample']
shuffle = neon_data_ref['shuffle']
train_set = PASCALVOC(dataset, year, path=data, output_type=output_type, n_mb=n_mb,
img_per_batch=img_per_batch, rois_per_img=rois_per_img,
rois_random_sample=rois_random_sample, shuffle=shuffle)
# X_batch[0]: image - (3e6, 2)
# X_batch[1]: ROIs - (128, 5)
# Y_batch[0]: labels - (21, 128)
# Y_batch[1][0]: bbtarget - (84, 128)
# Y_batch[1][1]: bb mask - (84, 128)
for mb_i, (X_batch, y_batch) in enumerate(train_set):
image_neon = X_batch[0].get()
image_ref = neon_data_ref['X_batch_img'][mb_i]
rois_neon = X_batch[1].get()
rois_ref = neon_data_ref['X_batch_rois'][mb_i]
label_neon = y_batch[0].get()
label_ref = neon_data_ref['y_batch_label'][mb_i]
bbtarget_neon = y_batch[1][0].get()
bbtarget_ref = neon_data_ref['y_batch_bbtarget'][mb_i]
mask_neon = y_batch[1][1].get()
mask_ref = neon_data_ref['y_batch_mask'][mb_i]
assert np.allclose(image_neon, image_ref, atol=1e-5, rtol=0)
assert np.allclose(rois_neon, rois_ref, atol=1e-5, rtol=0)
assert np.allclose(label_neon, label_ref, atol=1e-5, rtol=0)
assert np.allclose(bbtarget_neon, bbtarget_ref, atol=1e-5, rtol=0)
assert np.allclose(mask_neon, mask_ref, atol=1e-5, rtol=0)
if __name__ == '__main__':
# setup backend
parser = NeonArgparser(__doc__)
args = parser.parse_args(gen_be=False)
args.batch_size = 128
# setup backend
be = gen_backend(**extract_valid_args(args, gen_backend))
test_pascalvoc(be, args.data_dir)