forked from NervanaSystems/neon
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_backend_autodiff.py
157 lines (128 loc) · 5 KB
/
test_backend_autodiff.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# ----------------------------------------------------------------------------
# Copyright 2015-2016 Nervana Systems Inc.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ----------------------------------------------------------------------------
# pylint: skip-file
from builtins import range, zip
import itertools
import numpy as np
from neon import NervanaObject
from neon.backends.autodiff import Autodiff
from utils import call_func, gen_backend_tensors, tensors_allclose
def get_audiff_gradient(f, be, tensors):
"""
get autodiff gradient w.r.t the tensors
"""
op_tree = f(be, *tensors)
ad = Autodiff(op_tree, be)
return ad
def get_numerical_gradient(f, tensors, delta=1e-5):
"""
sum all of f's elements to make the last layer error as one
"""
# buffer for gradients
gradients = []
for i in range(len(tensors)):
tensors[i] = tensors[i].astype(np.float64)
gradients.append(np.zeros(tensors[i].shape))
# iterate throuth each tensor
for tensor, gradient in zip(tensors, gradients):
tensor_flat = tensor.reshape((-1, ))
gradient_flat = gradient.reshape((-1, ))
# iterate throuth each element
for idx in range(len(tensor_flat)):
# backup
backup = tensor_flat[idx]
# increment
tensor_flat[idx] = tensor_flat[idx] + delta
f_inc = np.sum(f(np, *tensors))
# decrement
tensor_flat[idx] = backup - delta
f_dec = np.sum(f(np, *tensors))
# recover
tensor_flat[idx] = backup
# gradient
gradient_flat[idx] = (f_inc - f_dec) / (2.0 * delta)
return gradients
class Funcs(object):
"""
A collection of functions to be tested
"""
@staticmethod
def func_basic_ops(be, x0, x1, x2, x3, x4):
return (x0 + x2) + x0 * x4 + x1 * x3
@staticmethod
def func_real(be, x0, x1, x2, x3, x4):
return x1 + be.absolute(x2 + x3) + x4 - (x1 + be.square(x2 + x3) + x4)
@staticmethod
def func_dot(be, x0, x1, x2, x3, x4):
return (x0 + x3) + be.dot(x1, x2) - (x1 - x2) - be.dot(x3, x4)
@staticmethod
def func_dot_reduction_mix(be, x0, x1, x2, x3, x4):
f1 = be.max(x0, axis=1, keepdims=True)
f2 = be.min(x1, axis=0, keepdims=True)
f3 = be.dot(1. / x3, x2 + x4)
f4 = be.min(x3, axis=0, keepdims=True)
return f1 + f2 + f3 + f4
@staticmethod
def func_scalar_broadcast(be, x0, x1, x2, x3, x4):
return (0.2 * x0 - x1 * x2 / 3 * 4 * x1 + x0 * x0 / x0 / x3 + x4)
@staticmethod
def func_transpose(be, x0, x1, x2, x3, x4):
f1 = ((x0.T.T.T + x1).T + (x2 - x3.T.T + x4).T).T
f2 = (x0 + x0.T - f1.T.T - x1.T).T.T.T - x4
return f1 + f2
def pytest_generate_tests(metafunc):
# number of test to repeat
test_indices = list(range(1))
# test params
test_funcs = [
Funcs.func_basic_ops,
Funcs.func_real,
Funcs.func_dot,
Funcs.func_dot_reduction_mix,
Funcs.func_scalar_broadcast,
Funcs.func_transpose
]
test_tensor_flags = ['pos_rand', 'neg_rand', 'rand']
test_tensor_dims = [(2, 2)]
# generate params for testing
if 'custom_args' in metafunc.fixturenames:
fargs = itertools.product(test_indices,
test_funcs,
test_tensor_flags,
test_tensor_dims)
# parameterize test call
metafunc.parametrize("custom_args", fargs)
def test_gradients(backend_tests, custom_args):
test_idx, f, flag, dim = custom_args
# backend_tests fixture will parameterize over cpu and gpu
# backends as well as float16 and float32
# pull the be and dtype from the actions of the fixture
be = NervanaObject.be
dtype = be.default_dtype
# tensors
tensors = gen_backend_tensors([np, be], [dim] * 5, [flag] * 5, dtype=dtype)
# compare function value and gradient
numpy_func_val = call_func(f, np, tensors[0])
backend_func_val = call_func(f, be, tensors[1])
numerical_gradient = get_numerical_gradient(f, tensors[0])
ad = get_audiff_gradient(f, be, tensors[1])
autodiff_gradient = ad.get_grad_asnumpyarray(tensors[1])
# TODO: stricter test to fix numerical issues
assert tensors_allclose(numpy_func_val, backend_func_val, rtol=1e-2, atol=1e-2)
assert tensors_allclose(numerical_gradient, autodiff_gradient, rtol=1e-02, atol=1e-3)
# cleanup diff tree
ad.cleanup()
dtype = None
be = None