-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn.py
228 lines (179 loc) · 7.4 KB
/
rnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# !/usr/bin/env python
# -*- encoding: utf-8 -*-
import numpy as np
from abc import ABCMeta, abstractmethod
import matplotlib.pyplot as plt
import math
class layer(metaclass=ABCMeta):
@abstractmethod
def forward_propagation(self, x):
pass
@abstractmethod
def backward_propagation(self, du):
pass
def update_params(self):
pass
def show_params(self):
pass
class Affin(layer):
def __init__(self, w_shape, learn_rate):
self._learn_rate = learn_rate
normal_scale = 1 / math.sqrt(w_shape[0])
self._w = np.random.normal(scale=normal_scale, size=w_shape)
self._b = np.random.normal(scale=normal_scale, size=(w_shape[0], 1))
def forward_propagation(self, x):
self._x = x
ret = np.dot(self._w, x) + self._b
# ret = (np.dot(self._w, x) + self._b) * self._tau + ret_old * (1 - self._tau)
return ret
def backward_propagation(self, du):
round_L_x = np.dot(self._w.T, du)
self._round_L_w = np.dot(du, self._x.T)
self._round_L_b = du
return round_L_x
def update_params(self):
self._w -= self._learn_rate * self._round_L_w
self._b -= self._learn_rate * self._round_L_b
def show_params(self):
print("w: ", self._w)
print("b: ", self._b)
class Relu(layer):
def forward_propagation(self, x):
self._x = x
return np.maximum(0, x)
def backward_propagation(self, du):
return du * np.where(self._x > 0, 1, 0)
class Sigmoid(layer):
def forward_propagation(self, x):
self._y = 1 / (1 + np.exp(-x))
return self._y
def backward_propagation(self, du):
return du * self._y * (1 - self._y)
class Tanh(layer):
def forward_propagation(self, x):
self._x = x
return np.tanh(x)
def backward_propagation(self, du):
return du * 4 / ((np.exp(self._x) + np.exp(-self._x)) ** 2)
class RnnLayer(layer):
def __init__(self, w_shape, learn_rate, active_func):
self._learn_rate = learn_rate
# Xivierの初期値を用いる
w_in_normal_scale = 1 / math.sqrt(w_shape[0])
w_recorded_normal_scale = 1 / math.sqrt(w_shape[0])
self._w_in = np.random.normal(scale=w_in_normal_scale, size=w_shape)
self._w_recorded = np.random.normal(
scale=w_recorded_normal_scale, size=(w_shape[0], w_shape[0])
)
self._b = np.random.normal(scale=w_in_normal_scale, size=(w_shape[0], 1))
self._active_func = active_func
self._ret = None
def forward_propagation(self, x):
self._x = x
self._old_ret = self._ret # oldの値はBPTTでも使用するため、forwardの計算直前で更新
if self._old_ret is None: # 初回のみ普通のDense層
self._old_ret = np.zeros(shape=(self._w_in.shape[0], 1))
u = np.dot(self._w_in, x) + np.dot(self._w_recorded, self._old_ret) + self._b
self._ret = self._active_func.forward_propagation(u)
# ret = (np.dot(self._w, x) + self._b) * self._tau_reverse + ret_old * (1 - self._tau_reverse) 時定数を入れたCTRNNの場合
return self._ret
def backward_propagation(self, du):
du_new = self._active_func.backward_propagation(du)
round_L_x = np.dot(self._w_in.T, du_new)
self._round_L_w_in = np.dot(du_new, self._x.T)
self._round_L_w_recorded = np.dot(du_new, self._old_ret.T)
self._round_L_b = du_new
return round_L_x
def update_params(self):
self._w_in -= self._learn_rate * self._round_L_w_in
self._w_recorded -= self._learn_rate * self._round_L_w_recorded
self._b -= self._learn_rate * self._round_L_b
def show_params(self):
print("w: ", self._w)
print("b: ", self._b)
class MeanSquaredError(layer):
def forward_propagation(self, x, t):
self._diff = x - t
t_np = np.array(t)
if t_np.shape:
self._n = t_np.shape[0]
else:
self._n = 1
ret = np.sum(np.power(self._diff, 2)) / self._n
return ret
def backward_propagation(self):
return 2 / self._n * self._diff
class NeuralNetwork:
def __init__(self):
self._layers = []
self._epoch = 1
def init_params(self, epoch):
self._epoch = epoch
def add(self, layer):
self._layers.append(layer)
def set_error_layer(self, layer):
self._error_layer = layer
def fit(self, x, y):
layer_num = len(self._layers)
for _ in range(self._epoch):
for one_data, teach_data in zip(x, y):
target_x = one_data
for i in range(layer_num):
target_x = self._layers[i].forward_propagation(target_x)
self._error_layer.forward_propagation(target_x, teach_data)
du = self._error_layer.backward_propagation()
for i in reversed(range(layer_num)):
du = self._layers[i].backward_propagation(du)
self._layers[i].update_params()
def predict(self, x):
pred_y = np.empty(shape=x.shape[0])
for k, one_data in enumerate(x):
target_x = one_data
for i in range(len(self._layers)):
target_x = self._layers[i].forward_propagation(target_x)
pred_y[k] = target_x
return pred_y
def get_error(self):
return self._loss
def show_params(self):
for layer in self._layers:
layer.show_params()
if __name__ == "__main__":
network = NeuralNetwork()
network.init_params(epoch=100)
# network.add(RnnLayer(w_shape=[10, 1], learn_rate=0.01, active_func=Tanh()))
# network.add(RnnLayer(w_shape=[10, 10], learn_rate=0.01, active_func=Tanh()))
# network.add(RnnLayer(w_shape=[1, 10], learn_rate=0.01, active_func=Tanh()))
# network.set_error_layer(MeanSquaredError())
network.add(Affin(w_shape=[10, 1], learn_rate=0.01))
network.add(Tanh())
network.add(Affin(w_shape=[10, 10], learn_rate=0.01))
network.add(Tanh())
network.add(Affin(w_shape=[1, 10], learn_rate=0.01))
network.set_error_layer(MeanSquaredError())
# y=sin(x) (-pi < x <pi)を母集団とするデータを用いる。trainとtestに分ける
x_all = np.arange(-314, 314) * 0.01
data_num = len(x_all)
train_num = int(data_num * 0.5)
# RNNを使用するため、shafleしないverで試してみる
# np.random.shuffle(x_all)
# x_train = x_all[:train_num]
# x_test = x_all[train_num:]
x_train = x_all[::2] # 偶数indexのみ使用
x_test = x_all[1::2] # 奇数indexのみ使用
y_train = np.sin(x_train)
y_test = np.sin(x_test)
network.fit(x_train, y_train)
pred_y_train = network.predict(x_train)
pred_y = network.predict(x_test)
# network.show_params()
cal_error = MeanSquaredError()
print("train MSE: ", cal_error.forward_propagation(pred_y_train, y_train))
pred_error = cal_error.forward_propagation(pred_y, y_test)
print("test MSE: ", pred_error)
fig = plt.figure()
plt.scatter(x_test, pred_y, c="red", label="pred")
plt.scatter(x_test, y_test, c="blue", label="y=sin(x)")
plt.legend()
fig.savefig("temp.png")
plt.show()