forked from xylcbd/EasyCNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_train_test.cpp
569 lines (523 loc) · 19.7 KB
/
mnist_train_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
#include <iostream>
#include <cassert>
#include <algorithm>
#include <random>
#include "EasyCNN/EasyCNN.h"
#include "mnist_data_loader.h"
#include <opencv2/opencv.hpp>
const int classes = 10;
static bool fetch_data(const std::vector<image_t>& images,std::shared_ptr<EasyCNN::DataBucket> inputDataBucket,
const std::vector<label_t>& labels, std::shared_ptr<EasyCNN::DataBucket> labelDataBucket,
const size_t offset, const size_t length)
{
assert(images.size() == labels.size() && inputDataBucket->getSize().number == labelDataBucket->getSize().number);
if (offset >= images.size())
{
return false;
}
size_t actualEndPos = offset + length;
if (actualEndPos > images.size())
{
//image data
auto inputDataSize = inputDataBucket->getSize();
inputDataSize.number = images.size() - offset;
actualEndPos = offset + inputDataSize.number;
inputDataBucket.reset(new EasyCNN::DataBucket(inputDataSize));
//label data
auto labelDataSize = labelDataBucket->getSize();
labelDataSize.number = inputDataSize.number;
labelDataBucket.reset(new EasyCNN::DataBucket(inputDataSize));
}
//copy
const size_t sizePerImage = inputDataBucket->getSize()._3DSize();
const size_t sizePerLabel = labelDataBucket->getSize()._3DSize();
assert(sizePerImage == images[0].channels*images[0].width*images[0].height);
//scale to 0.0f~1.0f
const float scaleRate = 1.0f / 255.0f;
for (size_t i = offset; i < actualEndPos; i++)
{
//image data
float* inputData = inputDataBucket->getData().get() + (i - offset)*sizePerImage;
const uint8_t* imageData = &images[i].data[0];
for (size_t j = 0; j < sizePerImage;j++)
{
inputData[j] = (float)imageData[j] * scaleRate;
}
//label data
float* labelData = labelDataBucket->getData().get() + (i - offset)*sizePerLabel;
const uint8_t label = labels[i].data;
for (size_t j = 0; j < sizePerLabel; j++)
{
if (j == label)
{
labelData[j] = 1.0f;
}
else
{
labelData[j] = 0.0f;
}
}
}
return true;
}
static std::shared_ptr<EasyCNN::DataBucket> convertLabelToDataBucket(const std::vector<label_t>& test_labels, const size_t start, const size_t len)
{
assert(test_labels.size() > 0);
const size_t number = len;
const size_t sizePerLabel = classes;
std::shared_ptr<EasyCNN::DataBucket> result(new EasyCNN::DataBucket(EasyCNN::DataSize(number, classes, 1, 1)));
for (size_t i = start; i < start + len; i++)
{
//image data
float* labelData = result->getData().get() + (i - start)*sizePerLabel;
const uint8_t label = test_labels[i].data;
for (size_t j = 0; j < sizePerLabel; j++)
{
if (j == label)
{
labelData[j] = 1.0f;
}
else
{
labelData[j] = 0.0f;
}
}
}
return result;
}
static std::shared_ptr<EasyCNN::DataBucket> convertVectorToDataBucket(const std::vector<image_t>& test_images, const size_t start, const size_t len)
{
assert(test_images.size() > 0);
const size_t number = len;
const size_t channel = test_images[0].channels;
const size_t width = test_images[0].width;
const size_t height = test_images[0].height;
const size_t sizePerImage = channel*width*height;
const float scaleRate = 1.0f / 255.0f;
std::shared_ptr<EasyCNN::DataBucket> result(new EasyCNN::DataBucket(EasyCNN::DataSize(number, channel, width, height)));
for (size_t i = start; i < start + len; i++)
{
//image data
float* inputData = result->getData().get() + (i-start)*sizePerImage;
const uint8_t* imageData = &test_images[i].data[0];
for (size_t j = 0; j < sizePerImage; j++)
{
inputData[j] = (float)imageData[j] * scaleRate;
}
}
return result;
}
static uint8_t getMaxIdxInArray(const float* start, const float* stop)
{
assert(start && stop && stop >= start);
ptrdiff_t result = 0;
const ptrdiff_t len = stop - start;
for (ptrdiff_t i = 0; i < len; i++)
{
if (start[i] >= start[result])
{
result = i;
}
}
return (uint8_t)result;
}
static std::pair<float,float> test(EasyCNN::NetWork& network, const size_t batch,const std::vector<image_t>& test_images,const std::vector<label_t>& test_labels)
{
assert(test_images.size() == test_labels.size() && test_images.size()>0);
int correctCount = 0;
float loss = 0.0f;
int batchs = 0;
for (size_t i = 0; i < test_labels.size(); i += batch, batchs++)
{
const size_t start = i;
const size_t len = std::min(test_labels.size() - start, batch);
const std::shared_ptr<EasyCNN::DataBucket> inputDataBucket = convertVectorToDataBucket(test_images, start, len);
const std::shared_ptr<EasyCNN::DataBucket> labelDataBucket = convertLabelToDataBucket(test_labels, start, len);
const std::shared_ptr<EasyCNN::DataBucket> probDataBucket = network.testBatch(inputDataBucket);
//get loss
const float batch_loss = network.getLoss(labelDataBucket, probDataBucket);
loss = EasyCNN::moving_average(loss, batchs + 1, batch_loss);
const size_t labelSize = probDataBucket->getSize()._3DSize();
const float* probData = probDataBucket->getData().get();
for (size_t j = 0; j < len; j++)
{
const uint8_t stdProb = test_labels[i+j].data;
const uint8_t testProb = getMaxIdxInArray(probData + j*labelSize, probData + (j + 1) * labelSize);
if (stdProb == testProb)
{
correctCount++;
}
}
}
const float accuracy = (float)correctCount / (float)test_labels.size();
return std::pair<float, float>(accuracy,loss);
}
static float getAccuracy(const std::shared_ptr<EasyCNN::DataBucket> probDataBucket, const std::shared_ptr<EasyCNN::DataBucket> labelDataBucket)
{
const auto probSize = probDataBucket->getSize();
const auto labelSize = labelDataBucket->getSize();
const auto itemSize = labelSize._3DSize();
const float* probData = probDataBucket->getData().get();
const float* labelData = labelDataBucket->getData().get();
assert(probSize == labelSize);
int correctCount = 0;
int totalCount = 0;
for (size_t n = 0; n < probSize.number;n++)
{
const uint8_t stdProb = getMaxIdxInArray(labelData + n*itemSize, labelData + (n + 1) * itemSize);
const uint8_t testProb = getMaxIdxInArray(probData + n*itemSize, probData + (n + 1) * itemSize);
if (stdProb == testProb)
{
correctCount++;
}
totalCount++;
}
const float result = (float)correctCount / (float)totalCount;
return result;
}
static void add_input_layer(EasyCNN::NetWork& network)
{
std::shared_ptr<EasyCNN::InputLayer> inputLayer(std::make_shared<EasyCNN::InputLayer>());
network.addayer(inputLayer);
}
static void add_active_layer(EasyCNN::NetWork& network)
{
network.addayer(std::make_shared<EasyCNN::ReluLayer>());
}
static void add_conv_layer(EasyCNN::NetWork& network,const int number,const int input_channel)
{
std::shared_ptr<EasyCNN::ConvolutionLayer> convLayer(std::make_shared<EasyCNN::ConvolutionLayer>());
convLayer->setParamaters(EasyCNN::ParamSize(number, input_channel, 3, 3), 1, 1, true, EasyCNN::ConvolutionLayer::SAME);
network.addayer(convLayer);
}
static void add_pool_layer(EasyCNN::NetWork& network, const int number)
{
std::shared_ptr<EasyCNN::PoolingLayer> poolingLayer(std::make_shared<EasyCNN::PoolingLayer>());
poolingLayer->setParamaters(EasyCNN::PoolingLayer::PoolingType::MaxPooling, EasyCNN::ParamSize(1, number, 2, 2), 2, 2, EasyCNN::PoolingLayer::SAME);
network.addayer(poolingLayer);
}
static void add_fc_layer(EasyCNN::NetWork& network, const int output_count)
{
std::shared_ptr<EasyCNN::FullconnectLayer> fullconnectLayer(std::make_shared<EasyCNN::FullconnectLayer>());
fullconnectLayer->setParamaters(EasyCNN::ParamSize(1, output_count, 1, 1), true);
network.addayer(fullconnectLayer);
}
static void add_softmax_layer(EasyCNN::NetWork& network)
{
std::shared_ptr<EasyCNN::SoftmaxLayer> softmaxLayer(std::make_shared<EasyCNN::SoftmaxLayer>());
network.addayer(softmaxLayer);
}
static EasyCNN::NetWork buildConvNet(const size_t batch,const size_t channels,const size_t width,const size_t height)
{
EasyCNN::NetWork network;
network.setInputSize(EasyCNN::DataSize(batch, channels, width, height));
//input data layer
add_input_layer(network);
//convolution layer
add_conv_layer(network, 6 ,1);
add_active_layer(network);
//pooling layer
add_pool_layer(network, 6);
//convolution layer
add_conv_layer(network, 12, 6);
add_active_layer(network);
//pooling layer
add_pool_layer(network, 12);
//full connect layer
add_fc_layer(network, 512);
add_active_layer(network);
//network.addayer(std::make_shared<EasyCNN::DropoutLayer>(0.5f));
//full connect layer
add_fc_layer(network, classes);
//soft max layer
add_softmax_layer(network);
return network;
}
static EasyCNN::NetWork buildMLPNet(const size_t batch, const size_t channels, const size_t width, const size_t height)
{
EasyCNN::NetWork network;
network.setInputSize(EasyCNN::DataSize(batch, channels, width, height));
//input data layer
add_input_layer(network);
//full connect layer
add_fc_layer(network, 512);
add_active_layer(network);
//full connect layer
add_fc_layer(network, 256);
add_active_layer(network);
//full connect layer
add_fc_layer(network, classes);
//soft max layer
add_softmax_layer(network);
return network;
}
static void shuffle_data(std::vector<image_t>& images, std::vector<label_t>& labels)
{
assert(images.size() == labels.size());
std::vector<size_t> indexArray;
for (size_t i = 0; i < images.size();i++)
{
indexArray.push_back(i);
}
std::random_shuffle(indexArray.begin(), indexArray.end());
std::vector<image_t> tmpImages(images.size());
std::vector<label_t> tmpLabels(labels.size());
for (size_t i = 0; i < images.size(); i++)
{
const size_t srcIndex = i;
const size_t dstIndex = indexArray[i];
tmpImages[srcIndex] = images[dstIndex];
tmpLabels[srcIndex] = labels[dstIndex];
}
images = tmpImages;
labels = tmpLabels;
}
static float get_base(const float x)
{
for (int i = 0; i >= -10;i--)
{
const float base = std::pow(10.0f, i)+0.000001f;
if (x > base)
{
return base;
}
}
return 0.0f;
}
static void train(const std::string& mnist_train_images_file,
const std::string& mnist_train_labels_file,
const std::string& modelFilePath)
{
bool success = false;
EasyCNN::setLogLevel(EasyCNN::EASYCNN_LOG_LEVEL_CRITICAL);
//load train images
EasyCNN::logCritical("loading training data...");
std::vector<image_t> images;
success = load_mnist_images(mnist_train_images_file, images);
assert(success && images.size() > 0);
//load train labels
std::vector<label_t> labels;
success = load_mnist_labels(mnist_train_labels_file, labels);
assert(success && labels.size() > 0);
assert(images.size() == labels.size());
shuffle_data(images, labels);
//train data & validate data
//train
std::vector<image_t> train_images(static_cast<size_t>(images.size()*0.9f));
std::vector<label_t> train_labels(static_cast<size_t>(labels.size()*0.9f));
std::copy(images.begin(), images.begin() + train_images.size(), train_images.begin());
std::copy(labels.begin(), labels.begin() + train_labels.size(), train_labels.begin());
//validate
std::vector<image_t> validate_images(images.size() - train_images.size());
std::vector<label_t> validate_labels(labels.size() - train_labels.size());
std::copy(images.begin() + train_images.size(), images.end(), validate_images.begin());
std::copy(labels.begin() + train_labels.size(), labels.end(), validate_labels.begin());
EasyCNN::logCritical("load training data done. train set's size is %d,validate set's size is %d", train_images.size(), validate_images.size());
float learningRate = 0.1f;
const float decayRate = 0.8f;
const float minLearningRate = 0.001f;
const size_t testAfterBatches = 50;
const size_t maxBatches = 10000;
const size_t max_epoch = 5;
const size_t batch = 128;
const size_t channels = images[0].channels;
const size_t width = images[0].width;
const size_t height = images[0].height;
EasyCNN::logCritical("max_epoch:%d,testAfterBatches:%d", max_epoch, testAfterBatches);
EasyCNN::logCritical("learningRate:%f ,decayRate:%f , minLearningRate:%f", learningRate, decayRate, minLearningRate);
EasyCNN::logCritical("channels:%d , width:%d , height:%d", channels, width, height);
EasyCNN::logCritical("construct network begin...");
EasyCNN::NetWork network(buildConvNet(batch, channels, width, height));
network.setLossFunctor(std::make_shared<EasyCNN::CrossEntropyFunctor>());
network.setOptimizer(std::make_shared<EasyCNN::SGD>(learningRate));
network.setLearningRate(learningRate);
EasyCNN::logCritical("construct network done.");
float val_accuracy = 0.0f;
float train_loss = 0.0f;
int train_batches = 0;
float val_loss = 0.0f;
//train
EasyCNN::logCritical("begin training...");
std::shared_ptr<EasyCNN::DataBucket> inputDataBucket = std::make_shared<EasyCNN::DataBucket>(EasyCNN::DataSize(batch, channels, width, height));
std::shared_ptr<EasyCNN::DataBucket> labelDataBucket = std::make_shared<EasyCNN::DataBucket>(EasyCNN::DataSize(batch, classes, 1, 1));
size_t epochIdx = 0;
while (epochIdx < max_epoch)
{
//before epoch start, shuffle all train data first
shuffle_data(train_images, train_labels);
size_t batchIdx = 0;
while (true)
{
if (!fetch_data(train_images, inputDataBucket, train_labels, labelDataBucket, batchIdx*batch, batch))
{
break;
}
const float batch_loss = network.trainBatch(inputDataBucket,labelDataBucket);
train_loss = EasyCNN::moving_average(train_loss, train_batches + 1, batch_loss);
train_batches++;
if (batchIdx > 0 && batchIdx % testAfterBatches == 0)
{
std::tie(val_accuracy, val_loss) = test(network, 128, validate_images, validate_labels);
EasyCNN::logCritical("sample : %d/%d , learningRate : %f , train_loss : %f , val_loss : %f , val_accuracy : %.4f%%",
batchIdx*batch, train_images.size(), learningRate, train_loss, val_loss, val_accuracy*100.0f);
train_loss = 0.0f;
train_batches = 0;
}
if (batchIdx >= maxBatches)
{
break;
}
batchIdx++;
}
if (batchIdx >= maxBatches)
{
break;
}
std::tie(val_accuracy, val_loss) = test(network, 128, validate_images, validate_labels);
//update learning rate
learningRate = std::max(learningRate*decayRate, minLearningRate);
network.setLearningRate(learningRate);
EasyCNN::logCritical("epoch[%d] val_loss : %f , val_accuracy : %.4f%%", epochIdx++, val_loss, val_accuracy*100.0f);
}
std::tie(val_accuracy, val_loss) = test(network, 128, validate_images, validate_labels);
EasyCNN::logCritical("final val_loss : %f , final val_accuracy : %.4f%%", val_loss, val_accuracy*100.0f);
success = network.saveModel(modelFilePath);
assert(success);
EasyCNN::logCritical("finished training.");
}
static void test(const std::string& mnist_test_images_file,
const std::string& mnist_test_labels_file,
const std::string& modelFilePath)
{
bool success = false;
EasyCNN::setLogLevel(EasyCNN::EASYCNN_LOG_LEVEL_CRITICAL);
//load train images
EasyCNN::logCritical("loading test data...");
std::vector<image_t> images;
success = load_mnist_images(mnist_test_images_file, images);
assert(success && images.size() > 0);
//load train labels
std::vector<label_t> labels;
success = load_mnist_labels(mnist_test_labels_file, labels);
assert(success && labels.size() > 0);
assert(images.size() == labels.size());
EasyCNN::logCritical("load test data done. images' size is %d,validate labels' size is %d", images.size(), labels.size());
const size_t batch = 64;
const size_t channels = images[0].channels;
const size_t width = images[0].width;
const size_t height = images[0].height;
EasyCNN::logCritical("channels:%d , width:%d , height:%d", channels, width, height);
EasyCNN::logCritical("construct network begin...");
EasyCNN::NetWork network;
success = network.loadModel(modelFilePath);
assert(success);
EasyCNN::logCritical("construct network done.");
//train
EasyCNN::logCritical("begin test...");
float accuracy = 0.0f, loss = std::numeric_limits<float>::max();
std::tie(accuracy,loss) = test(network,batch,images, labels);
EasyCNN::logCritical("accuracy : %.4f%%", accuracy*100.0f);
EasyCNN::logCritical("finished test.");
}
static std::shared_ptr<EasyCNN::DataBucket> loadImage(const std::vector<std::pair<int, cv::Mat>>& samples)
{
const int number = samples.size();
const int channel = 1;
const int width = 28;
const int height = 28;
std::shared_ptr<EasyCNN::DataBucket> result(new EasyCNN::DataBucket(EasyCNN::DataSize(number, channel, width, height)));
const size_t sizePerImage = channel*width*height;
const float scaleRate = 1.0f / 255.0f;
for (size_t i = 0; i < (size_t)number; i++)
{
const cv::Mat srcGrayImg = samples[i].second;
cv::Mat normalisedImg;
cv::resize(srcGrayImg, normalisedImg, cv::Size(width, height));
cv::Mat binaryImg;
cv::threshold(normalisedImg, binaryImg, 127, 255, CV_THRESH_BINARY);
//image data
float* inputData = result->getData().get() + i*sizePerImage;
const uint8_t* imageData = binaryImg.data;
for (size_t j = 0; j < sizePerImage; j++)
{
inputData[j] = (float)imageData[j] * scaleRate;
}
}
return result;
}
static void test_single(const std::vector<std::pair<int, cv::Mat>>& samples, const std::string& modelFilePath)
{
bool success = false;
EasyCNN::setLogLevel(EasyCNN::EASYCNN_LOG_LEVEL_CRITICAL);
EasyCNN::logCritical("construct network begin...");
EasyCNN::NetWork network;
success = network.loadModel(modelFilePath);
assert(success);
EasyCNN::logCritical("construct network done.");
//train
EasyCNN::logCritical("begin test...");
const std::shared_ptr<EasyCNN::DataBucket> inputDataBucket = loadImage(samples);
const std::shared_ptr<EasyCNN::DataBucket> probDataBucket = network.testBatch(inputDataBucket);
const size_t labelSize = probDataBucket->getSize()._3DSize();
const float* probData = probDataBucket->getData().get();
for (size_t i = 0; i < samples.size(); i++)
{
const uint8_t testProb = getMaxIdxInArray(probData + i*labelSize, probData + (i + 1) * labelSize);
EasyCNN::logCritical("label : %d",testProb);
const cv::Mat srcGrayImg = samples[i].second;
cv::destroyAllWindows();
cv::imshow("src", srcGrayImg);
cv::waitKey(0);
}
EasyCNN::logCritical("finished test.");
}
static cv::Mat image_to_cv(const image_t& img)
{
assert(img.channels == 1);
cv::Mat result(img.height, img.width,CV_8UC1,(void*)(&img.data[0]),img.width);
return result.clone();
}
static std::vector<std::pair<int, cv::Mat>> export_random_mnist_image(const std::string& mnist_test_images_file,
const std::string& mnist_test_labels_file,
const int test_size)
{
std::vector<std::pair<int, cv::Mat>> result;
bool success = true;
std::vector<image_t> images;
success = load_mnist_images(mnist_test_images_file, images);
assert(success);
std::vector<label_t> labels;
success = load_mnist_labels(mnist_test_labels_file, labels);
assert(success);
std::default_random_engine generator;
std::uniform_int_distribution<int> dis(0, images.size());
for (int i = 0; i < test_size;i++)
{
const int idx = dis(generator);
const int label = labels[idx].data;
const cv::Mat image = image_to_cv(images[idx]);
result.push_back(std::make_pair(label, image));
}
return result;
}
int mnist_main(int argc, char* argv[])
{
EasyCNN::set_thread_num(4);
const std::string model_file = "../../res/model/mnist.modelx";
#if 1
const std::string mnist_train_images_file = "../../res/mnist_data/train-images.idx3-ubyte";
const std::string mnist_train_labels_file = "../../res/mnist_data/train-labels.idx1-ubyte";
train(mnist_train_images_file, mnist_train_labels_file, model_file);
system("pause");
//NOTE : NEVER NEVER fine tune network for the test accuracy!!!
const std::string mnist_test_images_file = "../../res/mnist_data/t10k-images.idx3-ubyte";
const std::string mnist_test_labels_file = "../../res/mnist_data/t10k-labels.idx1-ubyte";
test(mnist_test_images_file, mnist_test_labels_file, model_file);
#else
const std::string mnist_test_images_file = "../../res/mnist_data/t10k-images.idx3-ubyte";
const std::string mnist_test_labels_file = "../../res/mnist_data/t10k-labels.idx1-ubyte";
std::vector<std::pair<int, cv::Mat>> samples = export_random_mnist_image(mnist_test_images_file, mnist_test_labels_file, 10);
test_single(samples, model_file);
#endif
return 0;
}