-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_factory.py
executable file
·449 lines (358 loc) · 16.3 KB
/
data_factory.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import torch
import torch.nn as nn
import numpy as np
import os
from PIL import Image
import torchvision.transforms as transforms
import torchvision.transforms.functional as transforms_function
from torch.utils.data import Dataset, DataLoader
# handle PIL errors
from PIL import ImageFile
ImageFile.LOAD_TRUNCATED_IMAGES = True
Image.MAX_IMAGE_PIXELS = None
class dataset_sinkhole(Dataset):
""" Implements a dataset that returns different inputs and their corresponding sinkhole labels """
def __init__(self,
mode,
image,
dem,
dem_max,
dem_min,
NAIP,
label,
dem_dx,
dem_dy,
cutout_size=(400, 400),
full_dem_dx=None,
full_dem_dy=None,
dem_dxy_pre=None):
self.mode = mode
self.full_image = image
self.full_dem = dem
self.dem_max = dem_max
self.dem_min = dem_min
if self.mode != 'train':
self.full_dem_dx = full_dem_dx
self.full_dem_dy = full_dem_dy
self.dem_dx = dem_dx
self.dem_dy = dem_dy
self.dem_dxy_pre = dem_dxy_pre
self.full_NAIP = NAIP
self.full_label = label
self.cutout_size = cutout_size
self.to_tensor = transforms.ToTensor()
# Normalization methods and values
from config import cfg
self.normalization_shaded = cfg.data.normalize_shaded
self.normalization_dem = cfg.data.normalize_dem
self.normalize_dem_ddxy = cfg.data.normalize_dem_ddxy
self.normalize_dem_pre = cfg.data.normalize_dem_dxy_pre
self.normalization_naip = cfg.data.normalize_naip
self.normalize_shaded = transforms.Normalize(
mean=[0.69829104, 0.38062648, 0.21748482],
std=[0.0729226, 0.18631184, 0.20916126])
self.normalize_naip = transforms.Normalize(
mean=[0.46395134, 0.52389686, 0.38538468, 0.57477817],
std=[0.14210995, 0.13012627, 0.10734724, 0.15983065])
self.eval_pad = cfg.data.eval_pad # padding needed for evaluations
def __len__(self):
if self.mode == 'train':
# ~ 23x28 bins for image size of 9200x11257 and cutout size of 400x400
return 644
elif self.mode == 'val':
# 23x7 bins for an image size of 9200x2800 and cutout size of 400x400
return 161
elif self.mode == 'test':
# 24x35 bins for size 18850 x 14267
return 840
def __getitem__(self, idx):
if self.mode == 'train':
# during training, apply random cropping
# get crop parameters
i, j, h, w = transforms.RandomCrop.get_params(
self.full_image, output_size=self.cutout_size)
# apply crop on the shaded releif
image = transforms_function.crop(self.full_image, i, j, h, w)
# dem
dem = transforms_function.crop(self.full_dem, i, j, h, w)
dem.load()
dem_dxy_pre = transforms_function.crop(self.dem_dxy_pre, i, j, h, w)
dem_dxy_pre.load()
# dem derivatives
dem_dx = self.dem_dx[i:i + h, j:j + w]
dem_dy = self.dem_dy[i:i + h, j:j + w]
# apply crop on the NAIP image
naip = transforms_function.crop(self.full_NAIP, i, j, h, w)
# apply crop on the label
label = transforms_function.crop(self.full_label, i, j, h, w)
else:
# test data: # sequentially go through all the data
num_columns = 7 if self.mode == 'val' else 35
row, col = divmod(idx, num_columns)
if self.eval_pad:
left = max(col * self.cutout_size[0] - 40, 0)
upper = max(row * self.cutout_size[1] - 40, 0)
right = (col + 1) * self.cutout_size[0] + 40
lower = (row + 1) * self.cutout_size[1] + 40
else:
left = col * self.cutout_size[0]
upper = row * self.cutout_size[1]
right = (col + 1) * self.cutout_size[0]
lower = (row + 1) * self.cutout_size[1]
# apply crop on all the inputs
image = self.full_image.crop((left, upper, right, lower))
image.load()
dem = self.full_dem.crop((left, upper, right, lower))
dem.load()
dem_dxy_pre = self.dem_dxy_pre.crop((left, upper, right, lower))
dem_dxy_pre.load()
dem_dx = self.dem_dx[upper:lower, left:right]
dem_dy = self.dem_dy[upper:lower, left:right]
naip = self.full_NAIP.crop((left, upper, right, lower))
label = self.full_label.crop((left, upper, right, lower))
label.load()
# convert to tensor
image = self.to_tensor(image).float()
# Normalize shaded relief
if self.normalization_shaded == 'unit_gaussian':
image = self.normalize_shaded(image)
elif self.normalization_shaded == 'instance':
min_now = torch.min(image)
max_now = torch.max(image)
image = (image - min_now) / (max_now - min_now + 1e-7)
elif self.normalization_shaded == '0_to_1':
# to_tensor above already converts it to the [0, 1] range
pass
# Normalize DEM
dem_np = np.array(dem).astype(np.float32)
if self.normalization_dem == 'unit_gaussian':
dem_np = (dem_np - self.dem_min) / (self.dem_max - self.dem_min)
dem_np = (dem_np - 0.68867725) / (0.12318235)
elif self.normalization_dem == '0_to_1':
dem_np = (dem_np - self.dem_min) / (self.dem_max - self.dem_min
) # [0, 1]
# pass # already normalized this way
elif self.normalization_dem == 'instance':
min_now = np.min(dem_np)
max_now = np.max(dem_np)
dem_np = (dem_np - min_now) / (max_now - min_now + 1e-7)
elif self.normalization_dem == 'none':
# no normalization needed
pass
# normalize DEM derivatives
if self.normalize_dem_ddxy == 'instance':
min_now = np.min(dem_dx)
max_now = np.max(dem_dx)
dem_dx = (dem_dx - min_now) / (max_now - min_now + 1e-7)
min_now = np.min(dem_dy)
max_now = np.max(dem_dy)
dem_dy = (dem_dy - min_now) / (max_now - min_now + 1e-7)
elif self.normalize_dem_ddxy == '0_to_1':
dem_dx_min = -55.328857
dem_dx_max = 26.779816
dem_dx = (dem_dx - dem_dx_min) / (dem_dx_max - dem_dx_min)
dem_dy_min = -27.779816
dem_dy_max = 45.826863
dem_dy = (dem_dy - dem_dy_min) / (dem_dy_max - dem_dy_min)
elif self.normalize_dem_ddxy == 'unit_gaussian':
dem_dx_mean = -0.0093376
dem_dx_std = 0.41069648
dem_dx = (dem_dx - dem_dx_mean) / dem_dx_std
dem_dy_mean = -0.0038596862
dem_dy_std = 0.41352344
dem_dy = (dem_dy - dem_dy_mean) / dem_dy_std
# normalize dem derivative: this is pre-computed, conventional slope
dem_dxy_pre = np.array(dem_dxy_pre).astype(np.float32)
if self.normalize_dem_pre == 'instance':
min_now = np.min(dem_dxy_pre)
max_now = np.max(dem_dxy_pre)
dem_dxy_pre = (dem_dxy_pre - min_now) / (max_now - min_now + 1e-7)
elif self.normalize_dem_pre == 'unit_gaussian':
dem_dxy_pre = (dem_dxy_pre - 4.509918) / 4.211598
elif self.normalize_dem_pre == '0_to_1':
dem_dxy_pre = (dem_dxy_pre - 0) / 84.89005 # min=0, max=84.89005
# normalize naip
naip = self.to_tensor(naip).float()
if self.normalization_naip == 'unit_gaussian':
# print('naip shape: ', image.shape)
naip = self.normalize_naip(naip)
elif self.normalization_naip == 'instance':
min_now = torch.min(naip)
max_now = torch.max(naip)
naip = (naip - min_now) / (max_now - min_now + 1e-7)
elif self.normalization_naip == '0_to_1':
pass
# convert dem and naip to tensor
dem_tensor = torch.from_numpy(dem_np).float()
dem_dxy_pre_tensor = torch.from_numpy(dem_dxy_pre).float()
label = torch.from_numpy(np.array(label))
dem_dx = torch.from_numpy(dem_dx).unsqueeze(0)
dem_dy = torch.from_numpy(dem_dy).unsqueeze(0)
dem_dxy = torch.cat([dem_dx, dem_dy], dim=0)
return image, dem_tensor, naip, label, idx, dem_dxy, dem_dxy_pre_tensor
def get_data(cfg):
""" Reads data from the disk, computes statistics, and return train/val/test dataloaders """
data_dir = cfg.data.data_dir
""" Read images and print details """
# shaded relief
image_name = os.path.join(data_dir, 'ShadedRelief_Raster.tif')
image_full = Image.open(image_name)
print('shaded relief size: ', image_full.size)
print('shaded relief maximum: ', max(image_full.getdata()))
print('shaded relief minimum: ', min(image_full.getdata()))
# DEM
dem_name = os.path.join(data_dir, 'Ky_DEM_KYAPED_5FT_3.tif')
dem_full = Image.open(dem_name)
# save the max and min of dem for [0, 1] normalization
dem_max = max(dem_full.getdata())
dem_min = min(dem_full.getdata())
print('DEM size: ', dem_full.size)
print('DEM maximum: ', dem_max)
print('DEM minimum: ', dem_min)
dem_dx = np.load(os.path.join(data_dir, 'dem_dx.npy'))
dem_dy = np.load(os.path.join(data_dir, 'dem_dy.npy'))
print('DEM X-Derivative size: ', dem_dx.shape)
print('DEM Y-Derivative size: ', dem_dy.shape)
# Native, pre-computed derivatives
dem_dxy_pre_name = os.path.join(data_dir, 'Slope_Ky_DEM_KYAPED_5FT_3.tif')
dem_dxy_pre = Image.open(dem_dxy_pre_name)
NAIP_name = os.path.join(data_dir, 'Ky_NAIP_2018_5FT.tif')
NAIP_full = Image.open(NAIP_name)
print('NAIP size: ', NAIP_full.size)
print('NAIP maximum: ', max(NAIP_full.getdata()))
print('NAIP minimum: ', min(NAIP_full.getdata()))
# load annotation
label_name = os.path.join(data_dir, 'SinkholeBinaryRaster.tif')
label_full = Image.open(label_name)
print('label size: ', label_full.size)
print('label maximum: ', max(label_full.getdata()))
print('label minimum: ', min(label_full.getdata()))
""" Make splits """
split_ratio = 0.8
print('image width: ', image_full.size[0])
train_width = int(0.8 * image_full.size[0])
train_val_height = 9229 # this is to match the previous tiles
print('training: ', 100 * split_ratio, '% width = ', train_width)
# Training images
# shaded relief
image_train = image_full.crop((0, 0, train_width, train_val_height))
image_train.load()
# DEM
dem_train = dem_full.crop((0, 0, train_width, train_val_height))
dem_train.load()
print('dem train size:', dem_train.size)
# pre-compute DEM derivative
dem_dxy_train_pre = dem_dxy_pre.crop((0, 0, train_width, train_val_height))
dem_dxy_train_pre.load()
print('train dem derivative precomputed:', dem_dxy_train_pre.size)
dem_dx_train = dem_dx[:train_val_height, :train_width]
dem_dy_train = dem_dy[:train_val_height, :train_width]
print('train dem dxy train shape:', dem_dx_train.shape)
# NAIP image
NAIP_train = NAIP_full.crop((0, 0, train_width, train_val_height))
NAIP_train.load()
label_train = label_full.crop((0, 0, train_width, train_val_height))
label_train.load()
print('label train size:', label_train.size)
# Val images
# shaded relief
image_val = image_full.crop(
(train_width, 0, image_full.size[0], train_val_height))
image_val.load()
# DEM
dem_val = dem_full.crop(
(train_width, 0, image_full.size[0], train_val_height))
dem_val.load()
print('val dem val size:', dem_val.size)
dem_dxy_val_pre = dem_dxy_pre.crop(
(train_width, 0, image_full.size[0], train_val_height))
dem_dxy_val_pre.load()
print('val dem derivative precomputed:', dem_dxy_val_pre.size)
dem_dx_val = dem_dx[0:train_val_height, train_width:]
dem_dy_val = dem_dy[0:train_val_height, train_width:]
print('val dem dxy val shape:', dem_dy_val.shape)
# NAIP image
NAIP_val = NAIP_full.crop(
(train_width, 0, image_full.size[0], train_val_height))
NAIP_val.load()
label_val = label_full.crop(
(train_width, 0, image_full.size[0], train_val_height))
label_val.load()
print('label val size:', label_val.size)
# Test images
# shaded relief
image_test = image_full.crop(
(0, train_val_height, image_full.size[0], image_full.size[1]))
image_test.load()
# DEM
dem_test = dem_full.crop(
(0, train_val_height, image_full.size[0], image_full.size[1]))
dem_test.load()
print('test dem test size:', dem_test.size)
dem_dxy_test_pre = dem_dxy_pre.crop(
(0, train_val_height, image_full.size[0], image_full.size[1]))
dem_dxy_test_pre.load()
print('test dem derivative precomputed:', dem_dxy_test_pre.size)
dem_dx_test = dem_dx[train_val_height:, :]
dem_dy_test = dem_dy[train_val_height:, :]
print('test dem dxy test shape:', dem_dx_test.shape)
# NAIP image
NAIP_test = NAIP_full.crop(
(0, train_val_height, image_full.size[0], image_full.size[1]))
NAIP_test.load()
label_test = label_full.crop(
(0, train_val_height, image_full.size[0], image_full.size[1]))
label_test.load()
print('label test size:', label_test.size)
# instantiate dataset classes
train_dataset = dataset_sinkhole(mode='train',
image=image_train,
dem=dem_train,
dem_max=dem_max,
dem_min=dem_min,
NAIP=NAIP_train,
label=label_train,
cutout_size=cfg.data.cutout_size,
dem_dx=dem_dx_train,
dem_dy=dem_dy_train,
dem_dxy_pre=dem_dxy_train_pre)
val_dataset = dataset_sinkhole(mode='val',
image=image_val,
dem=dem_val,
dem_max=dem_max,
dem_min=dem_min,
NAIP=NAIP_test,
label=label_val,
cutout_size=cfg.data.cutout_size,
dem_dx=dem_dx_val,
dem_dy=dem_dy_val,
full_dem_dx=dem_dx,
full_dem_dy=dem_dy,
dem_dxy_pre=dem_dxy_val_pre)
test_dataset = dataset_sinkhole(mode='test',
image=image_test,
dem=dem_test,
dem_max=dem_max,
dem_min=dem_min,
NAIP=NAIP_test,
label=label_test,
cutout_size=cfg.data.cutout_size,
dem_dx=dem_dx_test,
dem_dy=dem_dy_test,
full_dem_dx=dem_dx,
full_dem_dy=dem_dy,
dem_dxy_pre=dem_dxy_test_pre)
# prepare dataloaders
train_loader = DataLoader(train_dataset,
batch_size=cfg.train.batch_size,
shuffle=True,
num_workers=cfg.train.num_workers)
val_loader = DataLoader(val_dataset,
batch_size=cfg.train.batch_size,
shuffle=cfg.train.shuffle,
num_workers=cfg.train.num_workers)
test_loader = DataLoader(test_dataset,
batch_size=cfg.train.batch_size,
shuffle=cfg.train.shuffle,
num_workers=cfg.train.num_workers)
return train_loader, val_loader, test_loader